Exploratory and Inferential Analysis of Benchmark Experiments

Manuel J. A. Eugster and Friedrich Leisch
Department of Statistics
Ludwig-Maximiliams-Universität München

International Conference on Computational Statistics, 2008

Benchmark experiments

Most popular scenario:

Benchmark experiments

Data set:

Given a data set $\mathfrak{L}=\left\{z_{1}, \ldots, z_{n}\right\}$, we draw B learning samples $(i=1, \ldots, B)$:

$$
\mathfrak{L}^{i}=\left\{z_{1}^{i}, \ldots, z_{n}^{i}\right\}
$$

Candidate algorithms:

There are $K>1$ algorithms $a_{k}(k=1, \ldots, K)$; $a_{k}\left(\cdot \mid \mathfrak{L}^{b}\right)$ is the fitted model based on the sample \mathfrak{L}^{b} with the distribution \mathcal{A}_{k} :

$$
a_{k}\left(\cdot \mid \mathfrak{L}^{b}\right) \sim \mathcal{A}_{k}(\mathfrak{L})
$$

Benchmark experiments

Performance measure:

Analytically, performance is measured by the scalar function:

$$
p_{k b}=p\left(a_{k}, \mathfrak{L}^{b}\right) \sim \mathcal{P}_{k}=\mathcal{P}_{k}(\mathfrak{L})
$$

The empirical analogue $\hat{p}_{k b}$ based on a test sample \mathfrak{T}; a common choice is $\mathfrak{T}=\mathfrak{L} \backslash \mathfrak{L}^{b}$.

Exemplar benchmark experiment

Experiment:

(1) regression problem motorcycle; (2) algorithms \{lm, nls, nnet, rpart, gam, loess, gamboost\}; (3) mean squared error; (4) bootstrap 250 samples; (5) out-of-bootstrap samples;

Exemplar benchmark experiment

Result:

	nnet	lm	rpart		gamboost	gam	nls
loess							
$[1]$,	669.2	2255.7	847.2	559.7	511.3	1933.3	548.8
$[2]$,	722.3	2194.9	957.1	626.9	582.1	1737.5	613.9
\ldots							
$[249]$,	1967.4	2095.9	659.2	417.4	489.6	1561.9	579.3
$[250]$,	1508.2	1962.3	926.6	509.1	440.6	1674.9	614.3

Exploratory analysis

Basic plots

Benchmark experiment plot

Benchmark experiment plot

Summary statistics and simple rankings

	Mean	SD	Median	Max	95% CI (Mean)
nnet	1438.1	868.4	977.2	3090.2	$[1329.4,1546.8]$
lm	2209.2	294.1	2209.8	3219.4	$[2172.3,2246.0]$
rpart	812.4	181.2	809.2	1304.6	$[789.7,835.1]$
gamboost	583.7	116.5	582.1	1022.9	$[569.1,598.3]$
gam	565.2	122.6	563.6	1256.0	$[549.9,580.6]$
nls	1818.1	242.3	1808.5	2674.7	$[1787.8,1848.4]$
loess	604.3	134.6	596.6	1363.1	$[587.4,621.1]$

Mean:

gam $<$ gamboost $<$ loess $<$ rpart $<$ nnet $<$ nls $<$ lm

Minimax:

gamboost $<$ gam $<$ rpart $<$ loess $<$ nls $<$ nnet $<$ lm
Mean - 95\% CI:
gamboost \approx gam \approx loess $<$ rpart $<$ nnet $<$ nls $<$ lm

Inferential analysis

Inferential analysis

Random block design:

$$
\begin{gathered}
p_{i j}=\kappa_{0}+\kappa_{j}+b_{i}+\epsilon_{i j} \\
i=1, \ldots, B, j=1, \ldots(K-1),
\end{gathered}
$$

with different assumptions on κ_{j}, b_{i} and $\epsilon_{i j}$.

Test problem:

$$
\begin{aligned}
& H_{0}: \kappa_{1}=\cdots=\kappa_{K-1}=0, \\
& H_{A}: \exists j: \kappa_{j} \neq 0,
\end{aligned}
$$

using parametric and non-parametric methods.

Linear mixed effects model

Assumptions:

κ_{j} fixed effect, b_{i} random effect,

$$
b_{i} \sim N\left(0, \sigma_{b}^{2}\right), \epsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Test problem:
Pairwise comparisons with Tukey contrasts.

Pairwise comparisons

General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

	Estimate
$\mathrm{lm}-\mathrm{nnet}==0$	771.05
rpart - nnet == 0	-625.70
gamboost - nnet ==	-854.45
gam - nnet == 0	-872.86
nls - nnet == 0	379.98
loess - nnet == 0	-833.83
rpart - lm == 0	-1396.75
gamboost - $1 \mathrm{~m}==0$	-1625.50
gam - lm == 0	-1643.91
$\mathrm{nls}-\mathrm{lm}==0$	-391.06
loess - lm == 0	-1604.88
gamboost - rpart ==	-228.75
gam - rpart $==0$	-247.16
nls - rpart == 0	1005.69
loess - rpart == 0	-208.13
gam - gamboost == 0	-18.41
nls - gamboost == 0	1234.43
loess - gamboost == 0	20.62
$\mathrm{nls}-\mathrm{gam}==0$	1252.85
loess - gam == 0	39.03
loess - nls == 0	-1213.

Order relation

In case of a significant difference between two algorithms we define a strict total order $<$, otherwise the algorithms are \approx-related.

Pairwise orders:
nnet $<$ lm, rpart $<$ nnet, gamboost $<$ nnet,.. , gam \approx
gamboost, gamboost $<$ nls, gamboost \approx loess,..
Binary relation:
Domain is $\{\mathcal{A}, \mathcal{A}\}$, where \mathcal{A} is the set of candidate algorithms; the graph is the set $\{($ nnet, $1 m)$, (rpart, nnet $), \ldots\}$.

Order relation

Topological sort:

 gam \approx gamboost \approx loess $<$ rpart $<$ nnet $<$ nls $<$ lmFurther developments

More complex scenarios

Exploratory and inferential analysis tools, e.g.:
Consensus: overall order based on different data sets and different performance measures.
Inference: model the design with two experimental factors, their interactions and blocking factors at two levels.

Papers \& Software

... at http://statistik.lmu.de/~eugster/benchmark/:

R Package:

benchmark version 0.01.

Reports:

Exploratory and Inferential Analysis of Benchmark Experiments.
Manuel J. A. Eugster, Torsten Hothorn and Friedrich Leisch. Technical Report 30, LMU Munich. R supplement "The uci621 benchmark experiment".

