Exploratory and Inferential Analysis of Benchmark Experiments

Manuel J. A. Eugster and Friedrich Leisch

Department of Statistics Ludwig-Maximiliams-Universität München

International Conference on Computational Statistics, 2008

Benchmark experiments

Most popular scenario:

Benchmark experiments

Data set:

Given a data set $\mathfrak{L} = \{z_1, \dots, z_n\}$, we draw *B* learning samples $(i = 1, \dots, B)$: $\mathfrak{L}^i = \{z_1^i, \dots, z_n^i\}$

Candidate algorithms:

There are K > 1 algorithms a_k (k = 1, ..., K); $a_k(\cdot | \mathfrak{L}^b)$ is the fitted model based on the sample \mathfrak{L}^b with the distribution \mathcal{A}_k :

$$\mathsf{a}_k(\cdot \mid \mathfrak{L}^b) \sim \mathcal{A}_k(\mathfrak{L})$$

Benchmark experiments

Performance measure:

Analytically, performance is measured by the scalar function:

$$p_{kb} = p(a_k, \mathfrak{L}^b) \sim \mathcal{P}_k = \mathcal{P}_k(\mathfrak{L})$$

The empirical analogue \hat{p}_{kb} based on a test sample \mathfrak{T} ; a common choice is $\mathfrak{T} = \mathfrak{L} \setminus \mathfrak{L}^b$.

Exemplar benchmark experiment

Experiment:

(1) regression problem motorcycle; (2) algorithms
{lm,nls,nnet,rpart,gam,loess,gamboost}; (3) mean squared
error; (4) bootstrap 250 samples; (5) out-of-bootstrap samples;

Exemplar benchmark experiment

Result:

	nnet	lm	rpart	gamboost	gam	nls	loess
[1,]	669.2	2255.7	847.2	559.7	511.3	1933.3	548.8
[2,]	722.3	2194.9	957.1	626.9	582.1	1737.5	613.9
[249,]	1967.4	2095.9	659.2	417.4	489.6	1561.9	579.3
[250,]	1508.2	1962.3	926.6	509.1	440.6	1674.9	614.3

Exploratory analysis

Basic plots

Candidates

Benchmark experiment plot

Benchmark experiment plot

Podium

Summary statistics and simple rankings

	Mean	SD	Median	Max	95% CI (Mean)
nnet	1438.1	868.4	977.2	3090.2	[1329.4, 1546.8]
lm	2209.2	294.1	2209.8	3219.4	[2172.3, 2246.0]
rpart	812.4	181.2	809.2	1304.6	[789.7, 835.1]
gamboost	583.7	116.5	582.1	1022.9	[569.1, 598.3]
gam	565.2	122.6	563.6	1256.0	[549.9, 580.6]
nls	1818.1	242.3	1808.5	2674.7	[1787.8, 1848.4]
loess	604.3	134.6	596.6	1363.1	[587.4, 621.1]

Mean:

```
gam < gamboost < loess < rpart < nnet < nls < lm
```

Minimax:

gamboost < gam < rpart < loess < nls < nnet < lm

Mean – 95% CI:

 $\texttt{gamboost} \approx \texttt{gam} \approx \texttt{loess} < \texttt{rpart} < \texttt{nnet} < \texttt{nls} < \texttt{lm}$

Inferential analysis

Inferential analysis

Random block design:

$$p_{ij} = \kappa_0 + \kappa_j + b_i + \epsilon_{ij},$$

$$i = 1, \dots, B, j = 1, \dots (K-1),$$

with different assumptions on κ_j , b_i and ϵ_{ij} .

Test problem:

$$\begin{aligned} H_0: \ \kappa_1 &= \cdots &= \kappa_{K-1} = 0, \\ H_A: \ \exists j: \ \kappa_j &\neq 0, \end{aligned}$$

using parametric and non-parametric methods.

Linear mixed effects model

Assumptions:

 κ_j fixed effect, b_i random effect,

$$b_i \sim N(0, \sigma_b^2), \epsilon_{ij} \sim N(0, \sigma^2).$$

Test problem:

Pairwise comparisons with Tukey contrasts.

Pairwise comparisons

General Linear Hypotheses

Order relation

In case of a significant difference between two algorithms we define a strict total order <, otherwise the algorithms are \approx -related.

Pairwise orders:

 $\verb"nnet" < \verb"lm, rpart" < \verb"nnet", gamboost" < \verb"nnet", \ldots, gam \approx \\ \verb"gamboost", gamboost" < \verb"nls, gamboost" \approx \verb"loess", \ldots$

Binary relation:

Domain is $\{\mathcal{A}, \mathcal{A}\}$, where \mathcal{A} is the set of candidate algorithms; the graph is the set $\{(nnet, lm), (rpart, nnet), \ldots\}$.

Order relation

Topological sort:

 $\texttt{gam} \approx \texttt{gamboost} \approx \texttt{loess} < \texttt{rpart} < \texttt{nnet} < \texttt{nls} < \texttt{lm}$

Further developments

More complex scenarios

Exploratory and inferential analysis tools, e.g.:

- **Consensus:** overall order based on different data sets and different performance measures.
 - **Inference:** model the design with two experimental factors, their interactions and blocking factors at two levels.

Papers & Software

... at http://statistik.lmu.de/~eugster/benchmark/:

R Package:

benchmark version 0.01.

Reports:

Exploratory and Inferential Analysis of Benchmark Experiments. Manuel J. A. Eugster, Torsten Hothorn and Friedrich Leisch. Technical Report 30, LMU Munich. **R supplement "The** *uci621* **benchmark experiment"**.