Exploratory and Inferential Analysis of Benchmark Experiments

Manuel J. A. Eugster and Friedrich Leisch

Departement for Statistics Ludwig-Maximiliams-Universität München

Statistical Computing 2008

"Zehnkampf/Decathlon"

Layers of abstraction

Layer One: Setup

Layer Two: Execution (1)

Performances	P ₂	0.8	0.7
		8.3	9.1
		2.2	1.9
		12.9	12.3
		0.9	1.1
		1.3	1.3
	P ₁	0.020	0.011
		0.219	0.350
		0.372	0.299
		0.014	0.032
		0.386	0.115
		0.299	 0.450
Samples	_	L ₁	 L _B

Layer Two: Execution (2)

Layer Two: Execution (3)

Layer Three: Analysis

Exploratory: get a better understanding of the benchmark experiment, "dig" for interesting information.Inferential: test hypotheses of interest, infer a statistically correct order.

Analyses of benchmark experiments with one data set

Common exploratory tools

$\phi =$	Mean	SD	Median	Max
blue	0.0110	0.0059	0.0100	0.0340
red	0.0116	0.0080	0.0100	0.0561
green	0.0293	0.0123	0.0273	0.0631
yellow	0.0344	0.0118	0.0340	0.0707
purple	0.0352	0.0094	0.0350	0.0561
orange	0.0353	0.0094	0.0350	0.0561

Benchmark experiment plot

Podium

"Full" Benchmark experiment plot

Podium

Inferential analysis

Random block design:

$$p_{ij} = \kappa_0 + \kappa_j + b_i + \epsilon_{ij},$$

$$i = 1, \dots, B, j = 1, \dots (K-1),$$

with different assumptions on κ_i , b_i and ϵ_{ij} .

Test problem:

$$\begin{aligned} H_0: \ \kappa_1 &= \cdots &= \kappa_{K-1} = 0, \\ H_A: \ \exists j: \ \kappa_j &\neq 0, \end{aligned}$$

using parametric and non-parametric methods.

Linear mixed effects model

Assumptions:

 κ_j fixed effect, b_i random effect,

$$b_i \sim N(0, \sigma_b^2), \epsilon_{ij} \sim N(0, \sigma^2).$$

Test problem:

Pairwise comparisons with Tukey contrasts.

Pairwise comparisons based on LME

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Patricester

Linear Hypotheses:

	Estimate
green - blue == 0	1.837e-02
orange - blue == 0	2.431e-02
purple - blue == 0	2.427e-02
red - blue == 0	6.863e-04
yellow - blue == 0	2.349e-02
orange - green == 0	5.941e-03
purple - green == 0	5.899e-03
red - green == 0	-1.769e-02
yellow - green == 0	5.121e-03
purple - orange == 0	-4.188e-05
red - orange == 0	-2.363e-02
yellow - orange == 0	-8.202e-04
red - purple == 0	-2.359e-02
yellow - purple == 0	-7.783e-04
yellow - red == 0	2.281e-02

Order relation and toplogical sort

In case of a significant difference between two algorithms we define a strict total order <, otherwise the algorithms are \approx -related.

Pairwise orders:

 $ext{red} pprox ext{blue}, ext{ purple} pprox ext{orange, blue} < ext{green}, \dots$

Topological sort:

 $\texttt{blue} \approx \texttt{red} < \texttt{green} < \texttt{orange} \approx \texttt{purple} \approx \texttt{yellow}$

Overall order

Performance measures *P_i*:

$$\label{eq:Mcl:blue} \begin{split} \mathsf{Mcl:} \ & \mathsf{blue} \approx \mathsf{red} < \mathsf{green} < \mathsf{orange} \approx \mathsf{purple} \approx \mathsf{yellow} \\ \mathsf{Time:} \ & \mathsf{red} < \mathsf{purple} < \mathsf{orange} < \mathsf{yellow} < \mathsf{green} < \mathsf{blue} \end{split}$$

Overall order: Hierarchical order*, Consensus ranking*

Analyses of benchmark experiments with more than one data set

Benchmark survey plot

Benchmark survey graph

Further formal analyses

Consensus: overall order based on the set of order relations.*

- **Inference:** model the design with two experimental factors, their interactions and blocking factors at two levels.*
 - **Overall:** sum up order relations based on different data sets and different performance measures.*

Statistically correct order

Algorithms {blue, green, orange, red, purple, yellow}, data sets {A,...,U}, performance measures $P_1 = misclassification$, $P_2 = computation time$:

blue < red pprox orange pprox green < yellow < purple

Perspective

Goals and future work

References

Bench Plot and Mixed Effects Models: First steps toward a comprehensiv benchmark analysis toolbox. Manuel J. A. Eugster and Friedrich Leisch. Technical Report 26, LMU Munich. Accepted for the Compstat 2008-Proceedings in Computational Statistics.

(*) *Exploratory and Inferential Analysis of Benchmark Experiments.* Manuel J. A. Eugster, Torsten Hothorn and Friedrich Leisch. Technical Report 30, LMU Munich.

http://www.statistik.lmu.de/~eugster