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Benchmark experiments

“Statistical decathlon:
Empirical investigations with the aim of comparing and ranking
(learning) algorithms with respect to certain performance measures.

In essence:

Draw observations from theoretically intractable performance
distributions of the learning algorithms, which are defined by either
artificial data generating processes or empirical distribution
functions from one or more data sets.
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Scenario 1:
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Scenario 2:
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Scenario 3:
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Abstract levels of benchmark experiments:

Setup: define design of a benchmark experiment; data sets,
candidate algorithms, performance measures and
resampling strategy.

Execution: execute Setup; parallel computation, monitoring,
sequential and adaptive procedures.

Analysis: exploratory and inferential analyses of the raw
performance measures; main objective is a
statistically correct order of the candidate algorithms.
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Scenario 1

“From the theoretical framework to a

concrete order of some candidate algorithms”
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General framework

Data generating process:

Given a data generating process DGP, we draw B independent and
indentically distributed learning samples:

et ={z, ...z} ~ DGP

eB = (2B ... zB} ~ DGP
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Candidate algorithms:

There are K > 1 algorithms ax (k =1,..., K) with the function
ak(- | £P) the fitted model on the learning sample £°
(b=1,...,B):

ar(- | £5) ~ Ax(DGP)

Performance measure:
Performance of algorithm ax when provied with the learning
sample £ is measured by a scalar function p:

pis = p(ak, £°) ~ Py = Pi(DGP)
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Supervised learning problems

Observations are of the form z = (y, x) where y denotes the
response variable and x a vector of input variables.

Algorithms are learners § = ax(x | £°) which, given the input
variables, predict the unknown response variable.
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Performance is defined by some functional u of the distribution of
a loss function L(y, §) which measures the discrepancy between
true response y and predicted value y:

pro = P(ak, £°) = u(L(y, ak(x | £°))) ~ Px(DGP)
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Performance is defined by some functional u of the distribution of
a loss function L(y, §) which measures the discrepancy between
true response y and predicted value y:

pb = Plak, £°) = u(L(y, ak(x | £°))) ~ P«(DGP)

Misclassification:
The loss function is

" 0, y=y
L(y,y) =
:9) {1, otherwise

and the functional y is the expectation E:
Pkb = Eak Ez:(y,x) L(_)/, ak(X | 2b))

with z = (y, x) drawn from the same data generating process as the
observations in the learning sample £°.
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If it is not possible to calculate y analytically, the empirical
analogue ux based on a test sample ¥ ~ DGP has to be used:

Pro = Plak, £°) = ps(L(y, ak(x | £°))) ~ Pr(DGP)
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If it is not possible to calculate y analytically, the empirical
analogue ux based on a test sample ¥ ~ DGP has to be used:

Pro = Plak, £°) = ps(L(y, ak(x | £°))) ~ Pr(DGP)

Misclassification:
The empirical functional ux is the expectation E with respect to the test

sample %:
ﬁ)kb = Eak Ez:(y,x) L(}G ak(X | Sb))

with z = (y,x) € %.
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Data generating process in a real world problem:

Given is one learning sample £ ~ Z, of n observations from some
distribution function Z. Then the empirical distribution function
Z, covers all knowledge about the data generating process:

DGP = Z,,.

Learning samples are defined by bootstrapping: £° ~ Z,.

Test samples are defined by the out-of-bootstrap observations:
Th =g\ gb.
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Empircial performance distributions:
For each candidate algorithm ay the empirical performance
distribution Py (L) is estimated based on the pyp.

Exploratory data analysis tools and formal inference procedures to
compare them and calculate a statistically correct order.
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Exemplar benchmark experiment

—» [monks3| 15 —» 277

nn

(1) classification problem monks3 (554 observations and 6 nominal
attributes); (2) algorithms {randomForest, nnet, 1da, knn, svm,
rpart}; (3) misclassification performance measure; (4) 250
bootstrap learning samples; (5) out-of-bootstrap test samples;
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Common practise

Comparison based on some summary statistics: algorithm a; is
better than algorithm ay iff ¢(P1) < ¢(P2).

¢ = | Mean SD Median Max
purple | 0.0352 0.0094 0.0350 0.0561
orange | 0.0197 0.0117 0.0185 0.0567
yellow | 0.0344 0.0118 0.0340 0.0707
red | 0.0116 0.0080 0.0100 0.0561
blue | 0.0110 0.0059 0.0100 0.0340
green | 0.0293 0.0123 0.0273  0.0631

Order based on Mean:

blue < red < orange < green < yellow < purple
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Exploratory analysis
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Inferential analysis

Random block design:

The set of algorithms as experimental factor x;, a learning sample
as the blocking factor b;; kg the intercept which expresses the
basic performance:

pij = Ko + Kj + bj + €jj,
i=1,....,B,j=1,...(K—1)
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Hypothesis of interest:
Ho: k1 ="+-=kKKk_1=0,
Ha: 3j: k; #0.

Testing using parametric and non-parametring methods (which
take different assumptions on &;, b; and €;).

Mixed effects model:
k; fixed effect, b; random effect and b; ~ N(0,02), €; ~ N(0,c?).
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Pairwise comparisons with Tukey contrasts; calculation of
simultaneous confidence intervals (95%), which allow controlling
the experimentwise error.
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Pairwise comparisons with Tukey contrasts; calculation of
simultaneous confidence intervals (95%), which allow controlling
the experimentwise error.
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Relations

Equivalence:

Based on the p-values: a; =~ a; iff their difference is not significant
(relevant).

Properties (i,j,k=1,...,K):
1. reflexive: a; ~ a;
2. symmetric: a; & aj = a; =~ a;

37 transitiv: a; = aj A aj = ax = a; = ax
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Equivalence classes (based on significance):

purple orange yellow 1red blue green
purple 1 0 1 0 0 0
orange 0 1 0 0 0 0
yellow 1 0 1 0 0 0
red 0 0 0 1 1 0
blue 0 0 0 1 1 0
green 0 0 0 0 0 1
blue, red
green
orange

purple, yellow
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Strict weak ordering:

Based on the p-values and the directions of the tests: a; < a; iff a;
is significantly (or relevantly) better than a;.

Properties (i,j,k =1,...,K):
1. irreflexive: a; £ a;
2. asymmetric: a; < aj = a; £ a;
37 transitiv: a; ~ aj A\ aj = ax = aj ~ ax

47 negatively transitiv: a; £ aj A aj £ ax = a; £ ak
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Equivalence classes and their order (based on significance):

purple orange yellow 1red blue green
purple 0 0 0 0 0
orange 0 1 0 0 1
yellow 0 0 0 0 0
red 1 1 0 0 1
blue 1 1 0 0 1
green 0 1 0 0 0

blue ~ red < orange < green < purple = yellow

l l H == OO

>
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Scenario 2

“Aggregation of different performance measures”
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Empirical performance distributions:
For each candidate algorithm a, J empricial performance
distributions P4 (£) are estimated based on py,.

Relation ensemble:
The exploratory and inferential analysis leads to an order relation

for each performance measure:

R={R,....R)}
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Exemplar benchmark experiment

R = {Rm, Rmm, Rc} with Ry, the relation based on the
misclassification and the mixed effect model; R, the relation
based on the minimax rule applied on the misclassification to
control the worst-case scenario; and R, the relation based on the
computation time.

Rm = blue =~ red < orange < green < purple ~ yellow
Rmm = blue < purple ~ red < orange < green < yellow
R. = red < purple < orange < yellow < green < blue
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Consensus decision making

Rm = blue =~ red < orange < green < purple ~ yellow
Rmm = blue < purple =~ red < orange < green < yellow
R. = red < purple < orange < yellow < green < blue

Aggregate the preferences of voters, i.e. the performance
measures’ orders of the candidate algorithms, in a way that “all
voters can live with”.
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Borda count:
Relations as “voters ranks™ the number of points given to an
algorithm equates to the number of related algorithms.

On relation R:
bordagr(a;) = #{a; | (ai,aj)) e R,j=1,...,K}
On the set of relations R (wg is a weighting factor):

bordaz(a Z wg - bordag(a;),
RER

Final order Ry, 4, is the order of the algorithms according to their
Borda count.
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Voters points:

purple orange yellow red blue green
Rm 0 3 0 4 4 2
Rmm 3 2 0 3 5 1
R 4 3 2 5 0 1
7 8 2 12 9 4

Final ranking:

red blue purple orange green yellow
1 2 3 4 5 6

Rpborda = red < blue < purple < orange < green < yellow
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Majority criterion:

If there is a single candidate preferred by a majority of voters to all
other candidates, then that candidate should win.

Borda count fails:

51 voters:
5 voters:
23 voters:

21 voters:

al

al <a2 < a3 < a4
a2 <a3<ad<al
a3 <a2<ad<al
ad <a2<al3<al

a2 a3 a4

153

205 151 91

a2 <al <a3 < a4
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Condorcet methods:
Rank algorithm a; above algorithm a; iff the number of individual
wins of a; over a; exceeds the number of losses.

Voting or Condorcet’s paradoxon:

Collective preferences can be cyclic, i.e. not transitive, even if the
preferences of individual voters are not.
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Optimization approach:
Find the minimal solution of the problem

Z WR dA(Rcona R) = michonEC-
RER

wg is a weighting factor, and C defines a suitable set of possible
consensus relations, e.g., the set of linear orders or the set of
complete preorders.

da(Ri1, R2) is the symmetric difference distance:

#{(ai,3)) [ (a1, ) € R) @ (a1, 3)) € Ro), i j = 1,..., K}
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Rm = blue =~ red < orange < green < purple ~ yellow
Rmm = blue < purple =~ red < orange < green < yellow
R. = red < purple < orange < yellow < green < blue

Optimization consensus over the set C of partial orders:

[P > e [} [feTon]

Rcon = blue ~ red < purple < orange < green < yellow
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Scenario 3

“More than one data set”
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Domain of interest:
Given is a set of data sets D = {£4, ..., LM} consisting of M data
sets representing the problem domain of interest.

For each data set £, (m=1,..., M) the benchmark experiment
is executed and results in J =1 K estimations of empirical
performance distributions P} (£m) with j =1,...,J and
k=1,... K.

These raw results are aggregated to an order R, of the candidate
algorithms.
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Exemplar benchmark experiment

(1) 21 binary classificatin problems originated from the UCI
Machine Learning repository: D = {A,..., U} (monks4 is letter
I); (2) - (5) unchanged.

Execution results in 21 x 6 empirical performance distributions and
21 order relations.
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Misclassification
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Consensus ranking

Optimization consensus over the set C of partial orders:
blue ~ orange < purple < green < red < yellow

blue ~ orange < purple < red < green < yellow

Final order:

blue ~ orange < purple < green =~ red < yellow
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Inferential analysis

Design with two experimental factors, their interactions, and
blocking factors at two levels:

Pijk = Ko + Kj + Yk + 0k + bk + bii + €ijk
i=1,...,B,j=1,....,(K—-1),k=1,...,(M—1).

The experimental factors are described by « and -, their
interactions by d. ko represents the basic performance of each

algorithm, x; the individual differences from the basic performance.

vk represents the data set effect. The blocking factors are
described by by, the data sets, and by;, the sampling within the
data sets. €jj describes the systematic error.
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Mixed effects model:
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Final order:

blue ~ orange < green < red < yellow < purple
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and finally ...

Statistical correct orders:
Statistical correct orders within the domain represented by the 21
data sets {A, ..., U}:

Rcon = blue ~ orange < purple < green =~ red < yellow

Rmem = blue ~ orange < green < red < yellow < purple
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Papers and Software

... from http://statistik.1lmu.de/ eugster/benchmark.

R Package:
benchmark available from R-Forge.

Papers and reports:

Manuel J. A. Eugster and Friedrich Leisch. Bench plot and mixed
effects models: First steps toward a comprehensive benchmark
analysis toolbox. In Paula Brito, editor, Compstat
2008-Proceedings in Computational Statistics, pages 299-306.
Physica Verlag, Heidelberg, Germany, 2008.

Manuel J. A. Eugster, Torsten Hothorn and Friedrich Leisch.
Exploratory and Inferential Analysis of Benchmark Experiments.
Technical Report 30, LMU Municht. Submitted.
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