
Sequential/Adaptive Benchmarking

Manuel J. A. Eugster

Institut für Statistik
Ludwig-Maximiliams-Universität München

Forschungskolloqium IMBS, Universität zu Lübeck, 2010

1 / 34



2 / 34



2 / 34



Benchmark experiments

“Statistical decathlon”: The modern decathlon (benchmark
experiment) is a set combination of athletic disciplines (data sets),
testing an athlete’s (learning algorithm’s) strength, speed, stamina,
endurance and perseverance (performance measures).

(*) Based on Wikipedia (2010).

3 / 34



Data generating process:

Given a data generating process DGP, we draw B independent and
identically distributed learning samples:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB1 , . . . , zBn } ∼ DGP

Candidate algorithms:

There are K > 1 algorithms ak (k = 1, . . . ,K ) with the function
ak(· | Lb) the fitted model on the learning sample Lb.

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).

4 / 34



Performance measure:
The performance of algorithm ak when provided with the learning
sample Lb is measured by a scalar function p:

pkb = p(ak ,L
b) ∼ Pk = Pk(DGP)

Generalization performance:

Empirical performance measure based on a validation sample
T ∼ DGP:

p̂kb = p̂T(ak ,L
b) ∼ P̂k = P̂k(DGP)

5 / 34



Algorithm

M
is

cl
as

si
fic

at
io

n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●
●

●●●

●

●●

●

●●●●

●

●

●●●

●

●

●

●
●

●

●●●●●

●

●

●●

●●

●

●●

●●

●

●

●

●●●●

●●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●●●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●●

●

●●

●●

●

●

●

●●●●

●●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

svm rpart rf nnet knn lda
Misclassification

D
en

si
ty

0

20

40

60

80

100

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Classification problem monks3 with B = 250 replications, bootstrapping as resampling

scheme to generate the learning samples Lb, and the out-of-bag scheme for Tb.

6 / 34



Algorithm

M
is

cl
as

si
fic

at
io

n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●
●

●●●

●

●●

●

●●●●

●

●

●●●

●

●

●

●
●

●

●●●●●

●

●

●●

●●

●

●●

●●

●

●

●

●●●●

●●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●●●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●●

●

●●

●●

●

●

●

●●●●

●●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

svm rpart rf nnet knn lda
Misclassification

D
en

si
ty

0

20

40

60

80

100

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Classification problem monks3 with B = 250 replications, bootstrapping as resampling

scheme to generate the learning samples Lb, and the out-of-bag scheme for Tb.

6 / 34



Inference:
Given the K different random samples {p̂k1, . . . , p̂kB} with B iid
samples drawn from the distributions P̂k(DGP) the null hypothesis
of interest for most problems is:

H0 : P̂1 = · · · = P̂K

Test procedure:

An algorithm ak is better than an algorithm ak′ with respect to a
performance measure p and a functional φ iff φ(P̂k) < φ(P̂k′)
(k, k ′ ∈ {1, . . . ,K}).

T

{
H0 : φ(P̂1) = · · · = φ(P̂K )

H1 : ∃k, k ′ : φ(P̂k) 6= φ(P̂k′)

7 / 34



Estimate

lda − knn
nnet − knn
nnet − lda

rf − knn
rf − lda

rf − nnet
rpart − knn
rpart − lda

rpart − nnet
rpart − rf

svm − knn
svm − lda

svm − nnet
svm − rf

svm − rpart

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.025 −0.020 −0.015 −0.010 −0.005 0.000

Pairwise test decisions based on the 95% simultaneous confidence intervals computed

for a linear mixed-effects model of the misclassification error using Tukey contrasts.

8 / 34



Preference relation:

ak ≺ ak′ – algorithm ak performs better than ak′

ak ∼ ak′ – algorithm ak performs equally to ak′

An arbitrary pairwise comparison induces a mathematical relation
R which we interpret as preference relation:

(ak R ak′)⇒ ak ∼ ak′

or

(ak R ak′)⇒ ak ≺ ak′

9 / 34



Estimate

lda − knn
nnet − knn
nnet − lda

rf − knn
rf − lda

rf − nnet
rpart − knn
rpart − lda

rpart − nnet
rpart − rf

svm − knn
svm − lda

svm − nnet
svm − rf

svm − rpart

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.025 −0.020 −0.015 −0.010 −0.005 0.000

Relation R is “significantly different”: (svm R rf), (svm R nnet), (svm R lda), . . .

Preference relation (strict part):

svm ∼ rpart ≺ rf ≺ nnet ≺ knn ∼ lda

10 / 34



Estimate

lda − knn
nnet − knn
nnet − lda

rf − knn
rf − lda

rf − nnet
rpart − knn
rpart − lda

rpart − nnet
rpart − rf

svm − knn
svm − lda

svm − nnet
svm − rf

svm − rpart

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.025 −0.020 −0.015 −0.010 −0.005 0.000

Relation R is “significantly different”: (svm R rf), (svm R nnet), (svm R lda), . . .

Preference relation (strict part):

svm ∼ rpart ≺ rf ≺ nnet ≺ knn ∼ lda

10 / 34



Preference combination:
Aggregate an ensemble of preference relations, each based on an
performance measure of interest, using consensus decision-making
methods:

{R1, . . . ,Rj} ⇒w R̄

Combination methods are, for example, Borda count, Condorcet
approaches, optimization methods.

11 / 34



Algorithm

C
om

pu
ta

tio
n 

tim
e

5

10

15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●
●●

●

●●
●

●
●●●●●●●●
●
●●●●●
●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●●●●
●

●
●
●●●●
●●●●●●
●●
●●
●●●●●
●

●

●●●●●
●
●
●●●●●●●●

●

●●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●

●

●●●●
●
●●
●●●●●●
●●●●●
●
●●●
●●●
●
●●
●
●●●●
●
●●●●●●●●●●
●●●
●
●●●●
●
●
●●
●
●●●
●●●●●●●●●●●●
●●
●
●

●●●●
●●●●
●●●●●
●●●●●●
●●●
●
●●●●
●

●
●●
●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●
●●
●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●
●●
●
●●
●

●

●

●

●
●

●

●

●
●●
●
●

●

●

rpart lda rf knn nnet svm

Computation time (w = 0.2): rpart ≺ lda ≺ rf ≺ knn ≺ nnet ≺ svm

Misclassification (w = 1): svm ∼ rpart ≺ rf ≺ nnet ≺ knn ∼ lda

Consensus (linear order): rpart ≺ svm ≺ rf ≺ nnet ≺ lda ∼ knn

12 / 34



Algorithm

C
om

pu
ta

tio
n 

tim
e

5

10

15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●
●●

●

●●
●

●
●●●●●●●●
●
●●●●●
●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●●●●
●

●
●
●●●●
●●●●●●
●●
●●
●●●●●
●

●

●●●●●
●
●
●●●●●●●●

●

●●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●
●●

●

●●●●
●
●●
●●●●●●
●●●●●
●
●●●
●●●
●
●●
●
●●●●
●
●●●●●●●●●●
●●●
●
●●●●
●
●
●●
●
●●●
●●●●●●●●●●●●
●●
●
●

●●●●
●●●●
●●●●●
●●●●●●
●●●
●
●●●●
●

●
●●
●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●●

●

●
●

●

●

●
●
●

●
●

●
●

●

●

●
●●
●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●
●●
●
●●
●

●

●

●

●
●

●

●

●
●●
●
●

●

●

rpart lda rf knn nnet svm

Computation time (w = 0.2): rpart ≺ lda ≺ rf ≺ knn ≺ nnet ≺ svm

Misclassification (w = 1): svm ∼ rpart ≺ rf ≺ nnet ≺ knn ∼ lda

Consensus (linear order): rpart ≺ svm ≺ rf ≺ nnet ≺ lda ∼ knn

12 / 34



Sound benchmark experiment framework to compute a statistically
correct order of the candidate algorithms, but ...

... it is based on a, in most benchmark experiments, freely
chosen number of replications B:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB1 , . . . , zBn } ∼ DGP

(*) To be honest, in most cases B is specified based on the algorithms’

running times.

13 / 34



For b = 1, . . . ,B
1. Draw learning sample Lb.

2. Measure performance pkb of the
k = 1, . . . ,K candidate algorithms.

Execute test procedure T on the K performance
estimations {p1k , . . . , pBk} and make a decision
for a given α.

• Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

• The nature of benchmark experiments is sequential.

14 / 34



For b = 1, . . . ,B
1. Draw learning sample Lb.

2. Measure performance pkb of the
k = 1, . . . ,K candidate algorithms.

Execute test procedure T on the K performance
estimations {p1k , . . . , pBk} and make a decision
for a given α.

• Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

• The nature of benchmark experiments is sequential.

14 / 34



Do
1. Draw learning sample Lb.

2. Measure performance pbk of the
k = 1, . . . ,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {p1k , . . . , pbk}.

While no decision for a given α (and b ≤ B).

• Sequential/Adaptive benchmarking: execute test T
successively on the accumulating data.

• This enables

(1) to monitor the benchmark experiment, and
(2) to make a decision – to stop or to go on.

15 / 34



Do
1. Draw learning sample Lb.

2. Measure performance pbk of the
k = 1, . . . ,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {p1k , . . . , pbk}.

While no decision for a given α (and b ≤ B).

• Sequential/Adaptive benchmarking: execute test T
successively on the accumulating data.

• This enables

(1) to monitor the benchmark experiment, and
(2) to make a decision – to stop or to go on.

15 / 34



Exemplar benchmark experiments

(1) L is the Pima Indians Diabetes data set; (2) Lb by
bootstrapping; (3) linear discriminant analysis (lda), support
vector machine with C = 1.00 (svm1), support vector machine
with C = 1.01 (svm2), random forest (rf); (4) misclassification on
the out-of-bag samples; (5) B = 100.

⇒ compare two algorithms at a time, i.e., test if algorithm a1 is
better than algorithm a2.

(6) Wilcoxon Signed Rank test, α = 0.05.

16 / 34



Monitoring

Observe and interpret the test result, mainly the p-value, on the
accumulating performance measures.

17 / 34



Scenario 1 – Different algorithm performances:

Algorithm

M
is

cl
as

si
fic

at
io

n

0.20

0.22

0.24

0.26

0.28

0.30

0.32 ●●●●

lda svm1

p-value = 1.312e − 12

⇒ lda ≺ svm1

18 / 34



Scenario 1 – Different algorithm performances:

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 13

0 20 40 60 80 100

18 / 34



Scenario 2 – Similar algorithm performances:

Algorithm

M
is

cl
as

si
fic

at
io

n

0.18

0.20

0.22

0.24

0.26

0.28

0.30
●
●

●

●
●
●

●

●

rf svm1

p-value = 0.0484

⇒ rf ≺ svm1

19 / 34



Scenario 2 – Similar algorithm performances:

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 100

0 20 40 60 80 100

19 / 34



Scenario 2 – Similar algorithm performances:

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 117

0 50 100 150 200

19 / 34



Scenario 3 – Equal algorithm performances:

Algorithm

M
is

cl
as

si
fic

at
io

n

0.22

0.24

0.26

0.28

0.30

0.32 ●
●

●
●

●
●

●
●

svm2 svm1

p-pvalue = 0.9302

⇒ svm2 ≈ svm1

20 / 34



Scenario 3 – Equal algorithm performances:

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

0 20 40 60 80 100

20 / 34



Scenario 3 – Equal algorithm performances:

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

0 50 100 150 200

20 / 34



Interpretation

Point consecutively significance:

ΠScenario 1 = 13, ΠScenario 2 = 117, ΠScenario 3 =∞

Measure of “how big the difference” is – indicator for relevance?

21 / 34



Decision making

Execute a benchmark experiment as long as needed – either until
H0 is rejected or H0 is “accepted” (failed to reject).

22 / 34



Repeated significance testing:

Testing not once but multiple times causes the inflation of the
probability for the error of the first kind, i.e., the probability of
rejecting the global null hypothesis when in fact this hypothesis is
true; known as alpha inflation.

(*) First addressed by Armitage, McPherson, and Rowe (1969).

23 / 34



Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation – the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group – the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).

24 / 34



Sequential analysis of benchmark experiments:

General differences to the common field (e.g., clinical trials).

1. Compared to clinical trials it is easy and (relatively) cheap to
make additional replications until a final decision, i.e., to
reject or accept H0; so, (theoretically) there is no undecidable
situation.

2. Benchmark experiments are computer experiments often
executed on remote servers, etc; so decisions made in the
interim and planning phases need a sound automatization (or
“interactive” interim and planning phases).

25 / 34



Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two stages.

(*) Defined by Brannath, Posch, and Bauer (2002).

26 / 34



Two-stage combination tests:

Test a one-sided null hypothesis H0 at level α using two stages.

Stage 1: B1 learning samples, decision boundaries α01 and α11

(0 ≤ α11 < α < α01 ≤ 1).

Decision =


reject H0, p1 ≤ α11

accept H0, p1 > α01

perform Stage 2, α11 < p1 ≤ α01

Stage 2: B2 learning samples.

Decision =

{
reject H0, C (p1, p2) ≤ c

undecidable, otherwise

27 / 34



Test H0 at level α

Plan Stage 1: B1, T1,
C1(·, ·), α∗1 = α, α11,
α01, c1, q1(·, ·)

Calculate pt

pt?Accept H0

Recject H0

Plan Stage t + 1:
Bt+1, Tt+1, Ct+1(·, ·),
αt = α∗t , α1(t+1),
α0(t+1), ct+1, q(t+1)(·, ·)

t = 1

pt > α0t

pt ≤ α1t

α1t < pt ≤ α0t

t = t + 1

28 / 34



Fisher’s combination test:

C (pt−1, pt) = pt−1 · pt
Critical value:

ct =
α∗t − α1t

lnα0t − lnα1t

Conditional significance level:

α∗1 = α, α∗t =
ct−1

pt−1

Conditional decision boundaries:

α1t < α∗t ≤ α0t

29 / 34



Median combination test:
There is a strong dependence between the p-values, which is
caused by the overlap of learning and validation samples in one
replication with those of another replication.

Fisher’s combination test is inappropriate here; van de Wiel,
Berkhof, and van Wieringen (2009) propose to use

C (pt−1, pt) = median(pt−1, pt)

as p-value combination function.

30 / 34



Scenario 2 – Similar algorithm performances:

Split the scenario into four stages, i.e., Bt = B
4 = 50; define

α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9; and define the rule for the

conditional decision boundaries as α0t = α∗t
1.2 and α1t = α1(t−1).

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 117

0 50 100 150 200

31 / 34



Scenario 2 – Similar algorithm performances:

Split the scenario into four stages, i.e., Bt = B
4 = 50; define

α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9; and define the rule for the

conditional decision boundaries as α0t = α∗t
1.2 and α1t = α1(t−1).

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0
● ● ● ●

● ●

●

●

α1t

α0t

Stage 1 Stage 2 Stage 3 Stage 4

31 / 34



Summary

Monitoring:

• Point of consecutively significance.

Decision making:

• Statistical justification for the number of replications.

• Sound interim phase (or better an “interactive” one)?

• General advantage in real-world benchmark experiments?

32 / 34



Green Benchmarking!

http://CRAN.R-project.org/package=benchmark

33 / 34



References

P. Armitage, C. K. McPherson, and B. C. Rowe. Repeated significane test on
accumulating data. Journal of the Royal Statistical Society, 132(2), 1969.

Werner Brannath, Martin Posch, and Peter Bauer. Recursive combination tests.
Journal of the American Statistical Association, 97(457):236–244, 2002.

Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Exploratory and
inferential analysis of benchmark experiments. Under review, 2010a.

Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Domain-based
benchmark experiments: Exploratory and inferential analysis. Under review, 2010b.

Torsten Hothorn, Friedrich Leisch, Achim Zeileis, and Kurt Hornik. The design and
analysis of benchmark experiments. Journal of Computational and Graphical
Statistics, 14(3):675–699, 2005.

Mark A. van de Wiel, Johannes Berkhof, and Wessel N. van Wieringen. Testing the
prediction error difference between 2 predictors. Biostatistics, 10(3):550–560, 2009.

Marc Vandemeulebroecke. Group sequential and adaptive designs – a review of basic
concepts and points of discussion. Biometrical Journal, 50(3), 2008.

Wikipedia. Decathlon. Wikipedia article, visited on November 16, 2010, 2010. URL
http://en.wikipedia.org/wiki/Decathlon.

34 / 34

http://en.wikipedia.org/wiki/Decathlon

	Benchmark experiments
	Exemplar benchmark experiments
	Monitoring
	Decision making
	Conclusion
	Appendix

