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Benchmark experiments

“Statistical decathlon” The modern decathlon (benchmark
experiment) is a set combination of athletic disciplines (data sets),
testing an athlete's (learning algorithm’s) strength, speed, stamina,
endurance and perseverance (performance measures).

(*) Based on Wikipedia (2010).
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Data generating process:
Given a data generating process DGP, we draw B independent and
identically distributed learning samples:

et ={z ...z} ~ DGP
eB = (2B ... By~ DGP

Candidate algorithms:
There are K > 1 algorithms a, (k =1, ..., K) with the function
ak(- | £P) the fitted model on the learning sample £P.

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).
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Performance measure:
The performance of algorithm ax when provided with the learning
sample £P is measured by a scalar function p:

prb = p(ak, £°) ~ Px = Px(DGP)

Generalization performance:

Empirical performance measure based on a validation sample
T ~ DGP:
Prb = Ps(ak, £°) ~ P = Pu(DGP)
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Misclassification
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Inference:

Given the K different random samples {px1, ..., Pk} with B iid
samples drawn from the distributions ﬁk(DGP) the null hypothesis
of interest for most problems is:

n

Ho - = = P

Test procedure:

An algorithm aj is better than an algorithm a,s with respect to a
performance measure p and a functional ¢ iff ¢(Px) < d(Pxr)
(k, k' € {1,...,K}).

7 Ho: P(P1) =+ = ¢(Pk)
Hi: 3k K o(Pi) # ¢(Pu)
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Preference relation:

ak < ax — algorithm aj performs better than ajs

ak ~ ay — algorithm ay performs equally to aj

An arbitrary pairwise comparison induces a mathematical relation
R which we interpret as preference relation:

(ak R ak/) = ak ~ ay’
or

(ak R ax) = ax < aw
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Preference combination:

Aggregate an ensemble of preference relations, each based on an
performance measure of interest, using consensus decision-making
methods:

{Ri,....,Ri}=wR

Combination methods are, for example, Borda count, Condorcet
approaches, optimization methods.
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Computation time
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Sound benchmark experiment framework to compute a statistically
correct order of the candidate algorithms, but ...

. it is based on a, in most benchmark experiments, freely
chosen number of replications B:

et =4z ... z}} ~ DGP

eB =128 ... By~ DGP

(*) To be honest, in most cases B is specified based on the algorithms’

running times.
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Forb=1,....B
1. Draw learning sample £°.
2. Measure performance pyp of the
k=1,...,K candidate algorithms.
Execute test procedure T on the K performance
estimations {pik, - .., pek} and make a decision
for a given a.
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Forb=1,....B
1. Draw learning sample £°.
2. Measure performance pyp of the
k=1,...,K candidate algorithms.
Execute test procedure T on the K performance
estimations {pik, - .., pek} and make a decision
for a given a.

e Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

e The nature of benchmark experiments is sequential.
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Do
1. Draw learning sample £°.

2. Measure performance ppi of the
k=1,...,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {pix,- .., Pbk}-
While no decision for a given a (and b < B).
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Do
1. Draw learning sample £°.
2. Measure performance ppi of the
k=1,...,K candidate algorithms.
3. Execute test procedure T on the K
performance estimations {pix,- .., Pbk}-
While no decision for a given a (and b < B).

¢ Sequential/Adaptive benchmarking: execute test T
successively on the accumulating data.
e This enables

(1) to monitor the benchmark experiment, and
(2) to make a decision — to stop or to go on.
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Exemplar benchmark experiments

(1) £ is the Pima Indians Diabetes data set; (2) £° by
bootstrapping; (3) linear discriminant analysis (1da), support
vector machine with C = 1.00 (svm1), support vector machine
with C = 1.01 (svm2), random forest (rf); (4) misclassification on
the out-of-bag samples; (5) B = 100.

=- compare two algorithms at a time, i.e., test if algorithm a; is
better than algorithm a5.

(6) Wilcoxon Signed Rank test, a = 0.05.
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Monitoring

Observe and interpret the test result, mainly the p-value, on the
accumulating performance measures.
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Scenario 1 — Different algorithm performances:
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Scenario 1 — Different algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 3 — Equal algorithm performances:
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Scenario 3 — Equal algorithm performances:
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Scenario 3 — Equal algorithm performances:
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Interpretation

Point consecutively significance:
I_|Scena|'io 1= 137 I_IScenario 2 = 1177 I_|Scenario 3=00

Measure of “how big the difference” is — indicator for relevance?
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Decision making

Execute a benchmark experiment as long as needed — either until
Ho is rejected or Hy is “accepted” (failed to reject).
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Repeated significance testing:

Testing not once but multiple times causes the inflation of the
probability for the error of the first kind, i.e., the probability of
rejecting the global null hypothesis when in fact this hypothesis is
true; known as alpha inflation.

(*) First addressed by Armitage, McPherson, and Rowe (1969).
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Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation — the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group — the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).
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Sequential analysis of benchmark experiments:
General differences to the common field (e.g., clinical trials).

1. Compared to clinical trials it is easy and (relatively) cheap to
make additional replications until a final decision, i.e., to
reject or accept Hp; so, (theoretically) there is no undecidable
situation.

2. Benchmark experiments are computer experiments often
executed on remote servers, etc; so decisions made in the
interim and planning phases need a sound automatization (or
“interactive” interim and planning phases).
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Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two stages.

(*) Defined by Brannath, Posch, and Bauer (2002).
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Two-stage combination tests:
Test a one-sided null hypothesis Hy at level o using two stages.

Stage 1: B; learning samples, decision boundaries a1 and ag1
(0§C(11<C¥<O¢01§1).

reject Ho, p1 < a1l
Decision = ¢ accept Hy, p1 > Qo1

perform Stage 2, a1 < p1 < ag1

Stage 2: By learning samples.

. reject Ho, C(p1,p) <c
Decision = ) i
undecidable, otherwise
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Test Hy at level

Plan Stage 1: B;, Ti,
G(), of = a, amn,
o1, C1, Q1('7')

t=1

Calculate p:

t=t+1

Plan Stage t + 1:

pt > ot arr < pr <ot | Ber1, Ter1, Gera(s, ),
Accept Hp «———"-< pt? > —-—"— > t . s eni(0)
Qe = O, O(t41)

Qo(t+1)r Ct+1, G(e+1)\y -

pr < aar

Recject Hop
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Fisher’s combination test:

C(pt—1,pt) = Pt—1- Pt
Critical value: .
O — o1t
G=—"—"—
In aotr — In a1t

Conditional significance level:

Ct—1
Pt—1

o] =a, af =

Conditional decision boundaries:

a1 < af < age
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Median combination test:

There is a strong dependence between the p-values, which is
caused by the overlap of learning and validation samples in one
replication with those of another replication.

Fisher's combination test is inappropriate here; van de Wiel,
Berkhof, and van Wieringen (2009) propose to use

C(pt-1, pt) = median(p;—1, pt)

as p-value combination function.
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Scenario 2 — Similar algorithm performances:

Split the scenario into four stages, i.e., By = % = 50; define
a=aj =0.05 a11 = 0.01, ap; = 0.9; and define the rule for the
conditional decision boundaries as ag; = % and a1r = ay¢-1)-
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Scenario 2 — Similar algorithm performances:
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Summary

Monitoring:

e Point of consecutively significance.

Decision making:

e Statistical justification for the number of replications.

e Sound interim phase (or better an “interactive” one)?

o General advantage in real-world benchmark experiments?
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Go Green!

Green Benchmarking!

http://CRAN.R-project.org/package=benchmark
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