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Benchmark experiments

Data generating process:

Given a data generating process DGP, we draw B independent and
indentically distributed learning samples:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB
1 , . . . , z

B
n } ∼ DGP

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).
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Candidate algorithms:

There are K > 1 algorithms ak (k = 1, . . . ,K ) with the function
ak(· | Lb) the fitted model on the learning sample Lb:

ak(· | Lb) ∼ Ak(DGP)

Performance measure:
Performance of algorithm ak when provied with the learning
sample Lb is measured by a scalar function p:

pkb = p(ak ,L
b) ∼ Pk = Pk(DGP)
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Inference:
Given the K different random samples {pk1, . . . , pkB} with B iid
samples drawn from the distributions Pk(DGP) the null hypothesis
of interest for most problems is:

H0 : P1 = · · · = PK

Test procedure:

An algorithm ai is better than an algorithm aj with respect to a
performance measure p and a functional φ iff φ(Pi ) < φ(Pj)
(i , j ∈ {1, . . . ,K}).

T

{
H0 : φ(P1) = · · · = φ(PK )

H1 : ∃i , j : φ(Pi ) 6= φ(Pj)
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• In most benchmark experiments B is a freely chosen number
(often specified depending on the algorithms’ runtime).

• Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

• The nature of benchmark experiments is sequential.

For b = 1, . . . ,B

1. Draw learning sample Lb.

2. Measure performance pkb of the
k = 1, . . . ,K candidate algorithms.

Execute test procedure T on the K performance
estimations {pk1, . . . , pkB} and make a decision
for a given α.
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Sequential benchmarking:

Execute test T successively on the accumulating data.

This enables

(1) to monitor the benchmark experiment, and

(2) to make a decision – to stop or to go on.

Do

1. Draw learning sample Lb.

2. Measure performance pkb of the
k = 1, . . . ,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {pk1, . . . , pkb}.

While no decision for a given α (and b ≤ B).
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Exemplar benchmark experiment

(1) Pima Indians Diabetes database; (2) Linear discriminant
analysis, Support vector machines (not tuned!); (3)
Misclassification; (4) B = 100; (5) Friedman test procedure,
α = 0.05;
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Asymptotic Friedman Test

data: value by

algorithms (lda, svm)

stratified by samples

chi-squared = 45.4301, df = 1, p-value = 1.582e-11

⇒ lda < svm
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Monitoring
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Scenario 1 – Clear situation:
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(*) LDA versus SVM.
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Scenario 2 – Not so clear situation:
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(*) SVM versus Random forest.
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Scenario 3 – Undecidable situation:
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(*) SVM versus SVM.

11 / 24



Scenario 3 – Undecidable situation:

samples

va
lu

e 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pima

50 100 150 200 250 300

pvalue
statistic

(*) SVM versus SVM.

11 / 24



Interpretation

Point of consecutively significance:

ΠScenario 1 = 13, ΠScenario 2 = 165, ΠScenario 3 =∞

Measure of “how big is the difference” – indicator for relevance?
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Decision making
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Goal: Execute the benchmark experiment as long as needed –
either to reject Ho or to “accept” (fail to reject) H0.

Requirement: Decision for an arbitrary hypothesis of interest, on
the basis of an arbitrarily corresponding test procedure T and for a
given significance level α.
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Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation – the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group – the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).
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Repeated significance testing:

Testing not once but multiple times causes the inflation of the
probability for the error of the first kind, i.e., the probability of
rejecting the global null hypothesis when in fact this hypothesis is
true; known as alpha inflation.

(*) First addressed by Armitage, McPherson, and Rowe (1969).
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Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two separate stages.

(*) Defined by Brannath, Posch, and Bauer (2002).
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Two-stage combination tests:

Test a one-sided null hypothesis H0 at level α using two stages.

Stage 1:
Sample size n1, early decision boundaries a0 and a1

(0 ≤ α1 < α < α0 ≤ 1), p-value p1.

Decision =


p1 ≤ α1, reject H0

p1 > α0, accept H0

α1 < p1 ≤ α0, perform Stage 2

18 / 24



Stage 2:
Sample size n2, combination function C (·, ·) with corresponding
c(·, ·, ·), p-value p2.

Decision =

{
C (p1, p2) ≤ c(α, α1, α0), reject H0

otherwise, undecidable

Overall p-value:

q(p1, p2) =

(
p1, if p1 ≤ α1 or p1 > α0

α1 +
R α0

α1

R 1

0
1[C(x,y)≤C(p1,p2)]dydx , otherwise

19 / 24



Recursive combination tests:

q(pt-1, pt)

α0,t, α1,t

p = q(p1, p2)

α0,1, α1,1

q(p2, p3)

α0,2, α1,2

Stop

...

Stage 1

Stage 2

Stage t
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Example – Fisher’s weighted product test:

C(p1, p2) = pw
1 · p2, w > 0

For w = 1:

c(α, α1, α0) =
α− α1

lnα0 − lnα1

q(p1, p2) =

8><>:
p1, if p1 ≤ α1 or p1 > α0

α1 + p1 · p2 · (lnα0 − lnα1), if p1 ∈ (α1, α0] and p1 · p2 ≤ α1

p1 · p2 + p1 · p2 · (lnα0 − ln p1 · p2), if p1 ∈ (α1, α0] and p1 · p2 ≥ α1

Recursive stopping boundaries:

α1,t < αt(p1, . . . , pt−1) ≤ α0,t

αt(p1, . . . , pt−1) = ct−1/pt−1
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Scenario 2 – Not so clear situation:
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(*) SVM versus Random forest.
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So ...

Monitoring:

• Point of consecutively significance.

Decision making:

• “Interactive” interim phase or sound automatization?

• Advantage in real-world benchmark experiments?

• Green Benchmarking!

http://CRAN.R-project.org/package=benchmark
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