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Benchmark experiments

Data generating process:

Given a data generating process DGP, we draw B independent and
identically distributed learning samples:

et ={z ...z} ~ DGP

eB —(zB ... zB} ~ DGP

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).
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Candidate algorithms:

There are K > 1 algorithms a, (k =1, ..., K) with the function
ak(- | £P) the fitted model on the learning sample £P.

Performance measure:
The performance of algorithm a, when provided with the learning
sample £P is measured by a scalar function p:

prb = p(ak, £°) ~ Py = Pr(DGP)
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Inference:

Given the K different random samples {p1, ..., pkg} with B iid
samples drawn from the distributions Px(DGP) the null hypothesis
of interest for most problems is:

Ho : Pi=--=Pg

Test procedure:

An algorithm aj is better than an algorithm a,s with respect to a
performance measure p and a functional ¢ iff ¢(Px) < d(Pxs)
(k, k' € {1,...,K}).

FJHo: o(P1) = = 6(Pk)
Hy: 3k, k" : ¢p(Pk) # &(Prr)
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Forb=1,...,B
1. Draw learning sample £°.
2. Measure performance pyp, of the
k=1,...,K candidate algorithms.
Execute test procedure T on the K performance
estimations {pi, - . ., pek} and make a decision
for a given a.
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Forb=1,...,B
1. Draw learning sample £°.
2. Measure performance pyp, of the
k=1,...,K candidate algorithms.
Execute test procedure T on the K performance
estimations {pi, - . ., pek} and make a decision
for a given a.

e Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

e In most benchmark experiments B is a freely chosen number
(often specified depending on the algorithms’ running time).

e The nature of benchmark experiments is sequential.
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Do
1. Draw learning sample £°.

2. Measure performance ppx of the
k=1,...,K candidate algorithms.

3. Execute test procedure T on the K

performance estimations {pix, - .., Pbk}-
While no decision for a given « (and b < B).
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Do
1. Draw learning sample £°.
2. Measure performance ppx of the
k=1,...,K candidate algorithms.
3. Execute test procedure T on the K
performance estimations {pix, - .., Pbk}-
While no decision for a given « (and b < B).

¢ Sequential/Adaptive benchmarking: execute test T
successively on the accumulating data.
e This enables

(1) to monitor the benchmark experiment, and
(2) to make a decision — to stop or to go on.
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Exemplar benchmark experiments

(1) £ is the Pima Indians Diabetes data set; (2) £° by
bootstrapping; (3) linear discriminant analysis (1da), support
vector machine with C = 1.00 (svm1), support vector machine
with C = 1.01 (svm2), random forest (rf); (4) misclassification on
the out-of-bag samples; (5) B = 100.

=- compare two algorithms at a time, i.e., test if algorithm a; is
better than algorithm a5.

(6) Wilcoxon Signed Rank test, a = 0.05.
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Monitoring

Observe and interpret the test result, mainly the p-value, on the
accumulating performance measures.
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Scenario 1 — Different algorithm performances:
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Scenario 1 — Different algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 2 — Similar algorithm performances:
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Scenario 3 — Equal algorithm performances:
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Scenario 3 — Equal algorithm performances:

Replication
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Scenario 3 — Equal algorithm performances:
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Interpretation

Point consecutively significance:
I_|Scena|'io 1= 137 I_IScenario 2 = 1177 I_|Scenario 3=00

Measure of “how big the difference” is — indicator for relevance?
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Decision making

Execute a benchmark experiment as long as needed — either until
Ho is rejected or Hy is “accepted” (failed to reject).
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Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation — the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group — the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).

14 / 22



Sequential analysis of benchmark experiments:
General differences to the common field (e.g., clinical trials).

1. Compared to clinical trials it is easy and (relatively) cheap to
make additional replications until a final decision, i.e., to
reject or accept Hp; so, (theoretically) there is no undecidable
situation.

2. Benchmark experiments are computer experiments often
executed on remote servers, etc; so decisions made in the
interim and planning phases need a sound automatization (or
“interactive” interim and planning phases).
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Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two stages.

(*) Defined by Brannath, Posch, and Bauer (2002).

16 / 22



Two-stage combination tests:
Test a one-sided null hypothesis Hy at level o using two stages.

Stage 1: B; learning samples, decision boundaries a1 and ag1
(0§C(11<C¥<O¢01§1).

reject Ho, p1 < a1l
Decision = ¢ accept Hy, p1 > Qo1

perform Stage 2, a1 < p1 < ag1

Stage 2: By learning samples.

. reject Ho, C(p1,p) <c
Decision = ) i
undecidable, otherwise
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Test Hy at level

Plan Stage 1: B;, Ti,
G(), of = a, amn,
o1, C1, Q1('7')

t=1

Calculate p:

t=t+1

Plan Stage t + 1:

pt > ot arr < pr <ot | Ber1, Ter1, Gera(s, ),
Accept Hp «———"-< pt? > —-—"— > t . s eni(0)
Qe = O, O(t41)

Qo(t+1)r Ct+1, G(e+1)\y -

pr < aar

Recject Hop

18 / 22



Fisher’s combination test:

C(pt—1,pt) = Pt—1- Pt
Critical value: .
O — o1t
G=—"—"—
In aotr — In a1t

Conditional significance level:

Ct—1
Pt—1

o] =a, af =

Conditional decision boundaries:

a1 < af < age
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Scenario 2 — Similar algorithm performances:

Split the scenario into four stages, i.e., By = % = 50; define
a=aj =0.05 a11 = 0.01, ap; = 0.9; and define the rule for the

conditional decision boundaries as ag: = % and a1r = ay¢-1)-
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Scenario 2 — Similar algorithm performances:
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Summary

Monitoring:

e Point of consecutively significance.

Decision making:

e Statistical justification for the number of replications.

e Sound interim phase (or better an “interactive” one)?

e General advantage in real-world benchmark experiments?

http://CRAN.R-project.org/package=benchmark
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