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Benchmark experiments

Data generating process:

Given a data generating process DGP, we draw B independent and
identically distributed learning samples:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB1 , . . . , zBn } ∼ DGP

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).
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Candidate algorithms:

There are K > 1 algorithms ak (k = 1, . . . ,K ) with the function
ak(· | Lb) the fitted model on the learning sample Lb.

Performance measure:
The performance of algorithm ak when provided with the learning
sample Lb is measured by a scalar function p:

pkb = p(ak ,L
b) ∼ Pk = Pk(DGP)
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Inference:
Given the K different random samples {pk1, . . . , pkB} with B iid
samples drawn from the distributions Pk(DGP) the null hypothesis
of interest for most problems is:

H0 : P1 = · · · = PK

Test procedure:

An algorithm ak is better than an algorithm ak′ with respect to a
performance measure p and a functional φ iff φ(Pk) < φ(Pk′)
(k, k ′ ∈ {1, . . . ,K}).

T

{
H0 : φ(P1) = · · · = φ(PK )

H1 : ∃k, k ′ : φ(Pk) 6= φ(Pk′)
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For b = 1, . . . ,B
1. Draw learning sample Lb.

2. Measure performance pkb of the
k = 1, . . . ,K candidate algorithms.

Execute test procedure T on the K performance
estimations {p1k , . . . , pBk} and make a decision
for a given α.

• Benchmark experiments are considered as fixed-sample
experiments; hypotheses of interests are tested using a test T
at the end.

• In most benchmark experiments B is a freely chosen number
(often specified depending on the algorithms’ running time).

• The nature of benchmark experiments is sequential.
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Do
1. Draw learning sample Lb.

2. Measure performance pbk of the
k = 1, . . . ,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {p1k , . . . , pbk}.

While no decision for a given α (and b ≤ B).

• Sequential/Adaptive benchmarking: execute test T
successively on the accumulating data.

• This enables

(1) to monitor the benchmark experiment, and
(2) to make a decision – to stop or to go on.
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Exemplar benchmark experiments

(1) L is the Pima Indians Diabetes data set; (2) Lb by
bootstrapping; (3) linear discriminant analysis (lda), support
vector machine with C = 1.00 (svm1), support vector machine
with C = 1.01 (svm2), random forest (rf); (4) misclassification on
the out-of-bag samples; (5) B = 100.

⇒ compare two algorithms at a time, i.e., test if algorithm a1 is
better than algorithm a2.

(6) Wilcoxon Signed Rank test, α = 0.05.
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Monitoring

Observe and interpret the test result, mainly the p-value, on the
accumulating performance measures.
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Scenario 1 – Different algorithm performances:
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Scenario 2 – Similar algorithm performances:
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Scenario 2 – Similar algorithm performances:
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Scenario 2 – Similar algorithm performances:
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Scenario 3 – Equal algorithm performances:
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Scenario 3 – Equal algorithm performances:
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Interpretation

Point consecutively significance:

ΠScenario 1 = 13, ΠScenario 2 = 117, ΠScenario 3 =∞

Measure of “how big the difference” is – indicator for relevance?
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Decision making

Execute a benchmark experiment as long as needed – either until
H0 is rejected or H0 is “accepted” (failed to reject).
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Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation – the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group – the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).
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Sequential analysis of benchmark experiments:

General differences to the common field (e.g., clinical trials).

1. Compared to clinical trials it is easy and (relatively) cheap to
make additional replications until a final decision, i.e., to
reject or accept H0; so, (theoretically) there is no undecidable
situation.

2. Benchmark experiments are computer experiments often
executed on remote servers, etc; so decisions made in the
interim and planning phases need a sound automatization (or
“interactive” interim and planning phases).
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Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two stages.

(*) Defined by Brannath, Posch, and Bauer (2002).
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Two-stage combination tests:

Test a one-sided null hypothesis H0 at level α using two stages.

Stage 1: B1 learning samples, decision boundaries α01 and α11

(0 ≤ α11 < α < α01 ≤ 1).

Decision =


reject H0, p1 ≤ α11

accept H0, p1 > α01

perform Stage 2, α11 < p1 ≤ α01

Stage 2: B2 learning samples.

Decision =

{
reject H0, C (p1, p2) ≤ c

undecidable, otherwise
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Test H0 at level α

Plan Stage 1: B1, T1,
C1(·, ·), α∗1 = α, α11,
α01, c1, q1(·, ·)

Calculate pt

pt?Accept H0

Recject H0

Plan Stage t + 1:
Bt+1, Tt+1, Ct+1(·, ·),
αt = α∗t , α1(t+1),
α0(t+1), ct+1, q(t+1)(·, ·)

t = 1

pt > α0t

pt ≤ α1t

α1t < pt ≤ α0t

t = t + 1

18 / 22



Fisher’s combination test:

C (pt−1, pt) = pt−1 · pt
Critical value:

ct =
α∗t − α1t

lnα0t − lnα1t

Conditional significance level:

α∗1 = α, α∗t =
ct−1

pt−1

Conditional decision boundaries:

α1t < α∗t ≤ α0t
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Scenario 2 – Similar algorithm performances:

Split the scenario into four stages, i.e., Bt = B
4 = 50; define

α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9; and define the rule for the

conditional decision boundaries as α0t = α∗t
1.2 and α1t = α1(t−1).
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Summary

Monitoring:

• Point of consecutively significance.

Decision making:

• Statistical justification for the number of replications.

• Sound interim phase (or better an “interactive” one)?

• General advantage in real-world benchmark experiments?

http://CRAN.R-project.org/package=benchmark
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