
Benchmark Experiments
A Tool for Analyzing Statistical Learning Algorithms

Manuel J. A. Eugster

Institut für Statistik
Ludwig-Maximiliams-Universität München

Rigorosum, 16. März 2011

1 / 40



Benchmark experiments

In general, benchmarking is the process of comparing individual
objects which compete in a specific field of activity; and the
comparisons are based on number computed by performance
measures.
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Data generating process:

Given is a data generating process DGP. We draw b = 1, . . . ,B
independent and identically distributed learning samples:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB
1 , . . . , z

B
n } ∼ DGP

Candidate algorithms:

There are K > 1 candidate algorithms ak (k = 1, . . . ,K ) available;
for each algorithm, ak( · | Lb) ∼ Ak(DGP) is the fitted model
based on a learning sample Lb.

(*) Following Hothorn, Leisch, Zeileis, and Hornik (2005).
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Performance measure:
The performance of the candidate algorithm ak when provided
with the learning samples Lb is measured by a scalar function p(·):

pbk = p(ak ,L
b) ∼ Pk(DGP)

Empirical performance measure:

An estimation of the generalization performance of algorithm ak

learned on learning sample Lb is based on a test sample
Tb ∼ DGP:

p̂bk = p̂(ak ,L
b,Tb) ∼ P̂k(DGP)
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Analysis of benchmark experiments
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Classification problem monks3 with B = 250 replications, bootstrapping as resampling

scheme to generate the learning samples Lb, and the out-of-bag scheme for Tb.
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Inference:
Given the K different random samples {p̂1k , . . . , p̂Bk} with B iid
samples drawn from the distributions P̂k(DGP) the null hypothesis
of interest for most problems is:

H0 : P̂1 = · · · = P̂K

Test procedure:

Use an appropriate non-parametric (e.g., Friedman test based) or
parametric (e.g., linear mixed-effects model based) test procedure
T to find significant pairwise differences.
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Pairwise test decisions based on the 95% simultaneous confidence intervals computed

for a linear mixed-effects model of the misclassification error using Tukey contrasts.
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Preference relation:

ak ≺ ak′ – algorithm ak is better than ak′

ak ∼ ak′ – algorithm ak is equally to ak′

An arbitrary pairwise comparison induces a mathematical relation
R which we interpret as preference relation:

(ak R ak′)⇒ ak ∼ ak′

or

(ak R ak′)⇒ ak ≺ ak′
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Preference combination:
Aggregate an ensemble of preference relations, each based on a
performance measure of interest, using consensus decision-making
methods:

{R1, . . . ,RJ′} ⇒w R̄

Aggregation methods are, for example, Borda count, Condorcet
approaches, optimization methods.

(*) For details see Eugster, Hothorn, and Leisch (2010a) and, e.g., Hornik and Meyer (2007).
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Sound benchmark experiment framework to compute a statistically
correct order of the candidate algorithms, but ...

... in most benchmark experiments, it is based on a
freely chosen number of replications B:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB
1 , . . . , z

B
n } ∼ DGP
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Sequential/adaptive benchmarking
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For b = 1, . . . ,B:
1. Draw learning sample Lb.

2. Measure performance pbk of the
k = 1, . . . ,K candidate algorithms.

Execute test procedure T on the K performance
estimations {p1k , . . . , pBk} and make a decision
for a given α.

• Benchmark experiments are considered as fixed-sample
experiments.

• The nature of benchmark experiments is sequential.
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Do
1. Draw learning sample Lb.

2. Measure performance pbk of the
k = 1, . . . ,K candidate algorithms.

3. Execute test procedure T on the K
performance estimations {p1k , . . . , pbk}.

While no decision for a given α (and b ≤ B).

• Sequential/adaptive benchmarking enables

(1) to monitor the benchmark experiment, and
(2) to make a decision – to stop or to go on.
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Exemplar benchmark experiments

(1) L is the Pima Indians Diabetes data set; (2) Lb by
bootstrapping; (3) linear discriminant analysis (lda), support
vector machine with C = 1.00 (svm1), support vector machine
with C = 1.01 (svm2), random forest (rf); (4) misclassification on
the out-of-bag samples; (5) B = 100.

⇒ compare two algorithms at a time, i.e., test if algorithm a1 is
better than algorithm a2.

(6) Wilcoxon Signed Rank test, α = 0.05.
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Monitoring

Goal: Observe and interpret the test result, mainly the p-value, on
the accumulating performance measures.

19 / 40



Scenario 1 – Different algorithm performances:

Algorithm

M
is

cl
as

si
fic

at
io

n

0.20

0.22

0.24

0.26

0.28

0.30

0.32 ●●●●

lda svm1

p-value = 1.312e − 12

⇒ lda ≺ svm1

20 / 40



Scenario 1 – Different algorithm performances:
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Scenario 2 – Similar algorithm performances:

Algorithm

M
is

cl
as

si
fic

at
io

n

0.18

0.20

0.22

0.24

0.26

0.28

0.30
●
●

●

●
●
●

●

●

rf svm1

p-value = 0.0484

⇒ rf ≺ svm1

21 / 40



Scenario 2 – Similar algorithm performances:
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Scenario 3 – Equal algorithm performances:
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Scenario 3 – Equal algorithm performances:
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Scenario 3 – Equal algorithm performances:
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Interpretation

Point consecutively significance:

ΠScenario 1 = 13, ΠScenario 2 = 117, ΠScenario 3 =∞

Measure of “how big the difference” is – indicator for relevance?
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Decision making

Goal: Execute a benchmark experiment as long as needed – either
until H0 is rejected or H0 is “accepted” (failed to reject).
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Repeated significance testing:

Testing not once but multiple times causes the inflation of the
probability for the error of the first kind, i.e., the probability of
rejecting the global null hypothesis when in fact this hypothesis is
true; known as alpha inflation.

(*) First addressed by Armitage, McPherson, and Rowe (1969).
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Analyses on accumulating data

Sequential: Sample observations one by one; the test is executed
after each new observation – the experiment can be
stopped at any point.

Group sequential: Sample groups of observations; the test is
executed after each group – the experiment can be
stopped after each group.

Adaptive: Group sequential with more flexibility, e.g., to change
hypothesis, group sample size, etc.

(*) Following Vandemeulebroecke (2008).
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Recursive combination tests

Adaptive test procedure based on the recursive application of
two-stage combination tests; and a p-value function to combine
p-values from two stages.

(*) Defined by Brannath, Posch, and Bauer (2002).
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Two-stage combination tests:

Test a one-sided null hypothesis H0 at level α using two stages.

Stage 1: B1 learning samples, decision boundaries α01 and α11

(0 ≤ α11 < α < α01 ≤ 1).

Decision =


reject H0, p1 ≤ α11

accept H0, p1 > α01

perform Stage 2, α11 < p1 ≤ α01

Stage 2: B2 learning samples.

Decision =

{
reject H0, C (p1, p2) ≤ c

undecidable, otherwise
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Test H0 at level α

Plan Stage 1: B1, T1,
C1(·, ·), α1 = α, α11,
α01, c1, q1(·, ·)

Calculate pt

pt?Accept H0

Reject H0

Plan Stage t + 1:
Bt+1, Tt+1, Ct+1(·, ·),
αt = α∗t , α1(t+1),
α0(t+1), ct+1, q(t+1)(·, ·)

t = 1

pt > α0t

pt ≤ α1t

α1t < pt ≤ α0t

t = t + 1
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Fisher’s product test:

C (pt−1, pt) = pt−1 · pt

Critical value:

ct =
α∗t − α1t

lnα0t − lnα1t

Conditional significance level:

α∗1 = α, α∗t =
ct−1

pt−1

Conditional decision boundaries:

α1t < α∗t ≤ α0t
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Global p-value (after t stages):

p = q(p1, p2)

with

q(p1, p2) =



p1, p1 ≤ α11 or p1 > α01

α11 + p1 · p2 · (lnα01 − lnα11), p1 ∈ (α11, α01]

and p1 · p2 ≤ α11

p1 · p2 + p1 · p2 · (lnα01 − ln p1 · p2), p1 ∈ (α11, α01]

and p1 · p2 ≥ α11

and
p2 = q(p2, . . . , q(pt−1, pt))
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Recursive combination tests in benchmark experiments:

There are differences between clinical trials – where sequential
analysis is usually applied – and benchmark experiments:

Automatized: Benchmark experiments are computer experiments;
decisions that are to be made in the interim and planning
phases need to be automatized soundly.

Multiobjective: Usually more than two candidate algorithms are
compared to a set of performance measures; perform
replications until a decision is made for each combination.

Approximative: Using resampling schemes lead to non-independent
p-values; however, the p-values’ correlation vanishes with
increasing data set size, we can rely on the asymptotic.

Decidable: It is easy and (comparatively) cheap to make additional
replications until a final decision is reached; i.e., to reject
or accept H0.
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Scenario 2 – Similar algorithm performances:

Split the scenario into four stages, i.e., Bt = B
4 = 50;

α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9; and the rule for the

conditional decision boundaries is α0t = α∗t
1.2 and α1t = α1(t−1).

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 117

0 50 100 150 200
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Application example

Benchmark experiments on 20 UCI data sets with B = 250; we
now take a look at the decisions of the recursive combination tests
for the two leader algorithms of each data set.

The non-parametric (one-sided) Wilcoxon Signed Rank test as Tt

and Fisher’s Product test as combination test Ct . Split each
experiment into five stages, i.e., t = 1, . . . , 5, Bt = B

5 = 50, and
define α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9. The rules for the

conditional decision boundaries are defined as α0t = α∗t
1.2 and

α1t = α1(t−1) −
‖α1(t−1)−α∗t ‖

10 .
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Data sets with significant differences (14 data sets):
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Data sets with non-significant differences (6 data sets):
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Summary

Taking the sequential nature of a benchmark experiment into
account, enables to monitor and to make decisions during the
execution of the experiment.

Monitoring:

• Point of consecutively significance.

Decision making:

• Statistical justification for the number of replications.

• For the UCI application example – early stopping in case of
significant decisions and no “well-founded” decisions otherwise.
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Outlook

• Less flexibility to the benefit of more efficiency?
Strictly sequential approaches or, e.g., the group sequential

approach CRP by Müller and Schäfer (2001).

• Multiobjective framework.
Allow more than one performance measure.

• Framework stability.
Investigate “all” possible test decisions under rearrangements of the

individual replications (permutations).
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Publications – Benchmark experiments

Manuel J. A. Eugster. benchmark: Benchmark Experiments Toolbox, 2011. URL
http://cran.r-project.org/package=benchmark. R package version 0.3-2.

Manuel J. A. Eugster and Friedrich Leisch. Bench plot and mixed effects models: First
steps toward a comprehensive benchmark analysis toolbox. In Paula Brito, editor,
Compstat 2008—Proceedings in Computational Statistics, pages 299–306. Physica
Verlag, Heidelberg, Germany, 2008. ISBN 978-3-7908-2083-6. Preprint available
from http://epub.ub.uni-muenchen.de/3206/.

Manuel J. A. Eugster and Friedrich Leisch. Exploratory analysis of benchmark
experiments – an interactive approach. Computational Statistics, 2010. doi:
10.1007/s00180-010-0227-z. Accepted for publication on 2010-06-08, preprint
available from http://epub.ub.uni-muenchen.de/10604/.

Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Exploratory and
inferential analysis of benchmark experiments. Under review, preprint available
from http://epub.ub.uni-muenchen.de/4134/, 2010a.

Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Domain-based
benchmark experiments: Exploratory and inferential analysis. Under review,
preprint available from http://epub.ub.uni-muenchen.de/4134/, 2010b.

Manuel J. A. Eugster, Friedrich Leisch, and Carolin Strobl. (Psycho-)analysis of
benchmark experiments – a formal framework for investigating the relationship
between data sets and learning algorithms. Under review, preprint available from
http://epub.ub.uni-muenchen.de/11425/, 2010c.
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Publications – Archetypal analysis

Manuel J. A. Eugster. archetypes: Archetypal Analysis, 2010. URL
http://cran.r-project.org/package=archetypes. R package version 2.0-2.

Manuel J. A. Eugster and Friedrich Leisch. From Spider-man to Hero – archetypal
analysis in R. Journal of Statistical Software, 30(8):1–23, 2009. URL
http://www.jstatsoft.org/v30/i08.

Manuel J. A. Eugster and Friedrich Leisch. Weighted and robust archetypal analysis.
Computational Statistics and Data Analysis, 55(3):1215–1225, 2011. doi:
10.1016/j.csda.2010.10.017. Preprint available from
http://epub.ub.uni-muenchen.de/11498/.
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Hans-Helge Müller and Helmut Schäfer. Adaptive group sequential designs for clinical
trials: Combining the advantages of adaptive and of classical group sequential
approaches. Biometrics, 57(3):886–891, 2001. doi:
10.1111/j.0006-341X.2001.00886.x.

Marc Vandemeulebroecke. Group sequential and adaptive designs – a review of basic
concepts and points of discussion. Biometrical Journal, 50(3), 2008. doi:
10.1002/bimj.200710436.

40 / 40


	Benchmark experiments
	Analysis of benchmark experiments
	Sequential/adaptive benchmarking
	Monitoring
	Decision making
	Application example
	Summary

	Appendix

