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Are there systematic differences in the performances of
learning algorithms related to specific dataset characteristics?

Important when illustrating

• the properties of existing methods, or

• the superiority of newly developed algorithms.
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The presented framework combines the advantages of three
well-established approaches:

1. Benchmark experiments from statistical and machine learning
to evaluate the performance of the algorithms;

2. Statistical and information-theoretic measures from meta
learning to describe the data sets; and

3. recursive partitioning of Bradley-Terry models from
psychology to capture the differences in the performance of
the algorithms on data sets with similar characteristics.
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1. Benchmark experiments

Data generating process:

Given is a data set L = {z1, . . . , zN}. We draw b = 1, . . . ,B
learning samples of size n using a resampling scheme (e.g.,
bootstrapping or subsampling):

Lb = {zb1 , . . . , zbn }

Candidate algorithms:

There are K > 1 candidate algorithms ak , k = 1, . . . ,K , available
for the solution of the underlying problem. For each algorithm,
ak(· | Lb) is the fitted model based on the sample Lb:

ak(· | Lb) ∼ Ak(L)

(*) Following Hothorn et al. (2005) and Eugster et al. (2012)
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Performance measure:
The performance of the candidate algorithm ak when provided
with the learning sample Lb is measured by a scalar function p:

pbk = p(ak ,L
b) ∼ Pk = Pk(L)

Empirical performance measure:

An estimation of the generalization performance of the candidate
algorithm ak learned on learning sample Lb is based on a test
sample Tb (often L \ Lb):

p̂bk = p̂Tb(ak ,L
b) ∼ P̂k(L)
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K algorithms

B samples
from data
set L1


p111 · · · p11K

...
. . .

...
p1B1 · · · p1BK

...
. . .

...

B samples
from data
set LM


pM11 · · · pM1K

...
. . .

...
pMB1 · · · pMBK
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3a. Preferene scaling

Pairwise comparisons:

Each comparison of the performance of two algorithms has three
possible outcomes:

1. the first algorithm wins

2. the second algorithm wins, or

3. both algorithms perform equally (i.e., a tie).

Performance relations:
The relation R(pmbk , pmbk ′) describes one of the outcomes (1), (2)
or (3) of the comparison of algorithms k and k ′ on sample b drawn
from data set m.

(*) Critchlow and Fligner (1991)
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K · (K − 1)/2 comparisons

B samples
from data
set L1


R(p111, p112) · · · R(p11K−1, p11K )
...

. . .
...

R(p1B1, p1B2) · · · R(p1BK−1, p1BK )
...

. . .
...

B samples
from data
set LM


R(pM11, pM12) · · · R(pM1K−1, pM1K )
...

. . .
...

R(pMB1, pMB2) · · · R(pMBK−1, pMBK )
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Bradley-Terry model:
According to the Bradley-Terry model the three possible outcomes
have the probabilities:

P (R(pmbk , pmbk′) = ”ak wins”) =
πk

πk + πk′ + ν
√
πkπk′

,

P (R(pmbk , pmbk′) = ”ak′wins”) =
πk′

πk + πk′ + ν
√
πkπk′

,

P (R(pmbk , pmbk′) = ”tie”) =
ν
√
πkπj′

πk + πk′ + ν
√
πkπk′

,

where the πk ≥ 0, k = 1, . . . ,K , are the parameters indicating the
strength of each algorithm, and ν ≥ 0 is a discrimination constant
governing the probability of ties.

The parameters are estimated via maximum likelihood; see, e.g., Strobl et al.

(2011).
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2. Statistical and information-theoretic measures

Dataset characterization:
Given some user-specified characteristics, data set characterization
can be formalized as follows.

1. map each data set into its individual characterization space
(L the space of all data sets, L ∈ L):

map : L → R∗ with L 7→ x∗

2. reduce the individual characterization spaces into one
common characterization space where all data sets are
comparable, i.e. a metric can be defined:

red : R∗ → Rd with x∗ 7→ xd

13 / 25



3. A specific data set characterization then consists of a set of
characteristics {(map1, red1), . . . , (mapJ , redJ)}, and for a
given data set L, its characterization is the vector
c = (c1, . . . , cJ) with cj = redj(mapj(L)), j = 1, . . . , J.

14 / 25



Characteristic Description ds1 ds2

obs.n number of observations 400 400
var.n number of variables 2 2

nvar.n number of nominal variables 0 0
nvar.entropy mean nominal variable entropy

nvar.bin number of binary variables 0 0
cvar.n number of continuous variables 2 2

cvar.mac mean multiple attribute correlation 0.06 0.06
resp.cl number of response classes 2 2

resp.entropy mean response entropy 5.93 5.93
i2r.fcc first canonical correlation 0.86 0.04

i2r.frac1 variation from first linear discriminant 1.00 1.00
i2r.mi mean mutual information

...

STATLOG (King et al., 1995) characteristics computed for the two illustrative

data sets; e.g., mapj is “first canonical correlation for each continuous variable”

and redj is “mean”.
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Figure 3: Relative variation of the characterizations of the 100 drawn samples
in case of ds1. The red line marks the characterization of the original data
set; NA means that this characteristic is not available on this data set.

of this map/reduce framework. As already noted, the STATLOG project
defined the first characteristics which are broadly established nowadays. To
simplify matters we make use of most of their characteristics together with
some additional ones; Table 1 provides a list of typical data set characteris-
tics (for a detailed description we refer to the original paper). With respect
to our notation, mapj, j = 1, . . . , J , corresponds to the different character-
istics in Table 1 and redj was chosen to be the mean for all characteristics.
Columns ds1 and ds2 of Table 1 show the characterization of the two data
sets in case of the toy example. As the data sets are constructed in a way
that they match in all characteristics except the linearly separability, the first
canonical correlation (i2r.fcc) is the only characteristic that differs; the first
canonical correlation ranges between [0, 1], where 1 means linearly separable
and 0 not linearly separable.

Now, extending the benchmark experiment framework with the calcula-
tion of data set characteristics allows us to determine the influence of data
set characteristics on the performance of algorithms: for each sample b drawn
from the original data set m, the benchmark experiment provides (1) the per-
formance of the candidate algorithms pmbk (k = 1, . . . , K), and (2) the charac-
terization of the sample cmb = (cmb1, . . . , cmbJ) with cmbj = redj(mapj(L

b
m)).

Note that some characteristics could vary between samples drawn from the

10

Relative variation of the characterizations of the 100 drawn samples in case of

ds1. The red line marks the characterization of the original data set; NA

means that this characteristic is not available on this data set.
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K · (K − 1)/2 comparisons J characteristics

B samples
from data
set L1


R(p111, p112) · · · R(p11K−1, p11K )
...

. . .
...

R(p1B1, p1B2) · · · R(p1BK−1, p1BK )

c111 · · · c11J

...
. . .

...
c1B1 · · · c1BJ

...
. . .

...
...

. . .
...

B samples
from data
set LM


R(pM11, pM12) · · · R(pM1K−1, pM1K )
...

. . .
...

R(pMB1, pMB2) · · · R(pMBK−1, pMBK )

cM11 · · · cM1J

...
. . .

...
cMB1 · · · cMBJ
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3b. Recursive partitioning of BT models

Model-based recursive partitioning:

• CART detects groups of observations with different values
of a response variable by means of recursively splitting the
feature space.

• Model-based recursive partitioning detects groups of
observations which vary in the parameters of a certain
model of interest by means of recursively splitting the
feature space.

(*) Breiman et al. (1984), Zeileis et al. (2008) and Strobl et al. (2011)
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Algorithm:

1. Fit a Bradley-Terry model for the paired comparisons of the
algorithms based on all data sets in the current node (starting
with the root node including all data sets).

2. Assess the stability of the Bradley-Terry model parameters
with respect to each characteristic of the data sets.

3. If there is significant instability in the model parameters, split
the data sets in two nodes along the characteristic with the
strongest instability, and use the cutpoint with the highest
improvement of the model fit.

4. Repeat steps 1–3 recursively in the resulting nodes until there
are no more significant instabilities (or the number of data
sets left in a node falls below a given stopping value).
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Figure 5: Partitioned paired comparison model.

of the strength parameter is appropriate for all data sets, this cumulative sum
process can be shown to converge to a Brownian bridge (Zeileis and Hornik,
2007). This property can be used as the basis for deriving statistical tests of
parameter instability for all types of data set characteristics, as described in
detail in Zeileis et al. (2008). Practically, in each recursive partitioning step
a p-value is computed for each data set characteristics. The variable showing
the lowest p-value is selected for the next split, because it is associated with
the strongest change in the strength parameters reflecting the performance
of the algorithms. Splitting stops when there are no more significant p-
values (or the number of data sets left in a node falls below a given stopping
value). Note that the reported p-values are Bonferroni adjusted to account
for multiple testing effects over a potentially large set of potential data set
characteristics.

When this model-based partitioning approach is employed to detect
groups of data sets with certain characteristics for which the performance-
rankings of the candidate algorithms differ, the resulting partition can be
displayed as a tree, as illustrated for the artificial toy example in Figure 5:
From all available characteristics in Table 1, the first canonical correlation
i2r.fcc—that indicates whether the data set is linearly separable—is cor-
rectly identified as the characteristic that induces a significant change in
the performance-ranking of the algorithms. For the 100 samples from data
set ds1, that is not linearly separable, the values of the characteristic i2r.fcc

15

The first canonical correlation i2r.fcc—that indicates whether the data set is

linearly separable—is correctly identified as the characteristic that induces a

significant change in the performance-ranking of the algorithms.
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Application example

UCI Machine Learning Repository:

• M = 13 data sets, that are all binary classification problems
but cover a wide range of data set characteristics.

• J = 16 dataset characteristics based on the STATLOG
project.

• K = 6 candidate algorithms (lda, knn, rpart, svm, nnet, rf).

• Misclassification as performance measure p; and B = 100
samples using 2/3-subsampling without replacement as
resampling scheme.
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Challenge

The main challenge of this approach is the selection of the “right”
data set characteristics.

TODO⇒ Create a huge collection of all kind of characteristics.

The benefit of this approach is that—at least from the set of
characteristics provided—the relevant ones are selected for splitting
automatically.
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Summary

• A statistically sound way for illustrating the properties of
existing methods or the superiority of new algorithms.

• Key advantages (because of the recursive partitioning of
Bradley-Terry models):

1. Easy interpretation by means of visualization;

2. Capturing of potentially complex interactions between different
data set characteristics; and

3. Selection of only those characteristics from a potentially large
number of data set characteristics that correspond to a
significant change in the performances of the algorithms.

The proposed method is implemented in the R benchmark package as of version 0.3-4.
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