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Are there systematic differences in the performances of
learning algorithms related to specific dataset characteristics?

Important when illustrating
e the properties of existing methods, or

e the superiority of newly developed algorithms.

2/25



. 8, gv®
0 f 0% o900
o %,
A..a.. c'f
Q

.
TRy 2

o ® Neee %0 oy
e M.\O. e .Mo .

o'on.o Wlou.ﬂ;om.ooooooo"s .Qh .

.~.- -
..-.u....\.....w At
a0 avr, .

Support vector machines (svm), linear discriminant analysis (1da)

and quadratic discriminant analysis (qda)
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The presented framework combines the advantages of three
well-established approaches:

1. Benchmark experiments from statistical and machine learning
to evaluate the performance of the algorithms;

2. Statistical and information-theoretic measures from meta
learning to describe the data sets; and

3. recursive partitioning of Bradley-Terry models from
psychology to capture the differences in the performance of
the algorithms on data sets with similar characteristics.
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1. Benchmark experiments

Data generating process:

Given is a data set £ = {z1,...,zy}. Wedraw b=1,...,B
learning samples of size n using a resampling scheme (e.g.,
bootstrapping or subsampling):

eb =z . Zb

ren

Candidate algorithms:

There are K > 1 candidate algorithms ax, k =1,..., K, available
for the solution of the underlying problem. For each algorithm,
ak(- | £P) is the fitted model based on the sample £°:

a(- | £°) ~ Ak(2)

(*) Following Hothorn et al. (2005) and Eugster et al. (2012)
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Performance measure:
The performance of the candidate algorithm a, when provided
with the learning sample £ is measured by a scalar function p:

ok = p(ak, £°) ~ Px = Pi(£)

Empirical performance measure:
An estimation of the generalization performance of the candidate

algorithm ay learned on learning sample £? is based on a test
sample T2 (often £\ L?):

~

Pok = Prs(a, £°) ~ Pr(L)
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Missclassification of the candidate algorithms on the two illustrative datasets
based on B = 100 with 2/3-subsampling as resampling scheme and p being the

misclassification error.
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Missclassification of the candidate algorithms on the two illustrative datasets

based on B = 100 with 2/3-subsampling as resampling scheme and p being the

misclassification error.
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Missclassification of the candidate algorithms on the two illustrative datasets
based on B = 100 with 2/3-subsampling as resampling scheme and p being the

misclassification error.
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3a. Preferene scaling

Pairwise comparisons:
Each comparison of the performance of two algorithms has three
possible outcomes:

1. the first algorithm wins
2. the second algorithm wins, or

3. both algorithms perform equally (i.e., a tie).

Performance relations:

The relation R(pmpbk, Pmbk’) describes one of the outcomes (1), (2)
or (3) of the comparison of algorithms k and k’ on sample b drawn
from data set m.

(*) Critchlow and Fligner (1991)
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K - (K —1)/2 comparisons

R(pi11, p112) -+ R(piik-1, P1ik)
R(pig1,p182) -+ R(piBk—1,P1BK)
R(PM11» PM12) te R(PMlela PM1K)

R(pmp1, pms2) -+ R(pmek—1, PmBK)
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Bradley-Terry model:

According to the Bradley-Terry model the three possible outcomes
have the probabilities:

. Tk
P(R , ) ="a ns') = ,
(R(Pmbks Pmbk’) k wins") T+ T + TR

. Tk’
P(R , /) ="apwins") = ,
( (pmbk pmbk) k ) T + T +V\/W

A V\/TkTj
P(R ) ="tie") = ,
(R{pm i) N N
where the 1, > 0, k =1,..., K, are the parameters indicating the

strength of each algorithm, and v > 0 is a discrimination constant
governing the probability of ties.

The parameters are estimated via maximum likelihood; see, e.g., Strobl et al.
(2011).
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Worth parameters—describing the location of the objects on the preference

scale—of a global BT model for the two illustrative datasets.
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2. Statistical and information-theoretic measures

Dataset characterization:
Given some user-specified characteristics, data set characterization
can be formalized as follows.

1. map each data set into its individual characterization space
(L the space of all data sets, £ € £):

map: L — R* with £+ x*
2. reduce the individual characterization spaces into one

common characterization space where all data sets are
comparable, i.e. a metric can be defined:

red: R* — R with x* — x9
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3. A specific data set characterization then consists of a set of
characteristics {(maps, redi), ..., (mapy, red;)}, and for a
given data set £, its characterization is the vector
c=(c1,...,cy) with ¢; = redj(map;(£)), j=1,...,J.
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Characteristic | Description dsi ds2
obs.n | number of observations 400 400
var.n | number of variables 2 2
nvar.n | number of nominal variables 0 0
nvar.entropy | mean nominal variable entropy
nvar.bin | number of binary variables 0 0
cvar.n | number of continuous variables 2 2
cvar.mac | mean multiple attribute correlation 0.06 || 0.06
resp.cl | number of response classes 2 2
resp.entropy | mean response entropy 5.93 || 5.93
i2r.fcc | first canonical correlation 0.86 || 0.04
i2r.fracl | variation from first linear discriminant | 1.00 || 1.00
i2r.mi | mean mutual information

STATLOG (King et al., 1995) characteristics computed for the two illustrative

data sets; e.g., map; is “first canonical correlation for each continuous variable'

and red; is “mean”.
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Relative variation of the characterizations of the 100 drawn samples in case of
dsl. The red line marks the characterization of the original data set; NA

means that this characteristic is not available on this data set.
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3b. Recursive partitioning of BT models

Model-based recursive partitioning;:

o CART detects groups of observations with different values
of a response variable by means of recursively splitting the
feature space.

e Model-based recursive partitioning detects groups of
observations which vary in the parameters of a certain

model of interest by means of recursively splitting the
feature space.

(*) Breiman et al. (1984), Zeileis et al. (2008) and Strobl et al. (2011)
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Algorithm:

1. Fit a Bradley-Terry model for the paired comparisons of the
algorithms based on all data sets in the current node (starting
with the root node including all data sets).

2. Assess the stability of the Bradley-Terry model parameters
with respect to each characteristic of the data sets.

3. If there is significant instability in the model parameters, split
the data sets in two nodes along the characteristic with the
strongest instability, and use the cutpoint with the highest
improvement of the model fit.

4. Repeat steps 1-3 recursively in the resulting nodes until there
are no more significant instabilities (or the number of data
sets left in a node falls below a given stopping value).

19/25



i2r.fcc
p < 0.001

<0.14 >0.14

Node 2 (n = 100 Node 3 (n = 100

1.1

1.1

svm Ida qda svm Ida qda

The first canonical correlation i2r.fcc—that indicates whether the data set is
linearly separable—is correctly identified as the characteristic that induces a

significant change in the performance-ranking of the algorithms.
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Application example

UCI Machine Learning Repository:

e M = 13 data sets, that are all binary classification problems
but cover a wide range of data set characteristics.

e J = 16 dataset characteristics based on the STATLOG
project.
e K = 6 candidate algorithms (lda, knn, rpart, svm, nnet, rf).

e Misclassification as performance measure p; and B = 100
samples using 2/3-subsampling without replacement as
resampling scheme.
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Challenge

The main challenge of this approach is the selection of the “right”
data set characteristics.

TODO . . ..
=~ Create a huge collection of all kind of characteristics.

The benefit of this approach is that—at least from the set of
characteristics provided—the relevant ones are selected for splitting
automatically.
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Summary

o A statistically sound way for illustrating the properties of
existing methods or the superiority of new algorithms.

e Key advantages (because of the recursive partitioning of
Bradley-Terry models):
1. Easy interpretation by means of visualization;

2. Capturing of potentially complex interactions between different
data set characteristics; and

3. Selection of only those characteristics from a potentially large
number of data set characteristics that correspond to a
significant change in the performances of the algorithms.

The proposed method is implemented in the R benchmark package as of version 0.3-4.
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