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Challenges of

Reproducible and/or Repeatable
Validation of Algorithms on Datasets

No Answers—Only Experiences
and (a lot of) Open Questions!
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B. Components of the exemplar benchmark experiment

B.1. Algorithms
The candidate algorithms are:

linear discriminant analysis: encoded as [, orange; available through the function 1da in package
MASS.

naive bayes classifier: encoded as ', yellow; available through the function naiveBayes in pack-
age e1071.

k-nearest neighbour classifier: encoded as M, purple; available through the function knn in pack-
age class. The hyperparameter k (the number of neighours) is determined with cross-
validation between 1 and /i, n the number of observations.

classification trees: encoded as M, red; available through the function rpart in package rpart.
The fulled tree is pruned according to the 1-SE rule (e.g., Venables and Ripley, 2002; Hastie
et al., 2001).

support vector machines: encoded as M, blue; available through the function svm in package
€1071. We use the C-classification machine, which has two hyperparameters 4 (the cost of
constraints violation) and ¢ (the kernel parameter). Following Meyer et al. (2003) the best
choices are determined with a grid search over the two-dimensional parameter space (7, c),
~ ranges from 27° to 22 and ¢ from 2710 to 2°.

neural networks: encoded as B, green; available through the function nnet in package nnet.
The hyperparameter is the number of hidden units. The best value is searched with cross-
validation between 1 and log(n), n the number of observations (following Meyer et al., 2003).

B.2. Data sets

The benchmark survey is made up of 21 binary classification problems originated from the UCI
Machine Learning repository (Asuncion and Newman, 2007):

Problem #Attributes #Samples Class
nominal continuous complete incomplete distribution (%)

promotergene A 57 106 50.00/50.00

hepatitis B 13 6 80 5 20.65/79.35
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Fieure 7: Grouped box plots (Trellis display): the raw performance measures of the candidate
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'
! blue territory

purple territory /
Figure 11: Benchmark survey graph: another representation of the distance matrix. The first 15
distance levels are shown, the color and the with of the edges represent them. Vertices are filled

according to the winner algorithm if there is a unique one.

4.3. Inference
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Mixed effects model. With linear mixed effects models, the assumptions on the random effects
are b; ~ N(0,0%), by ~ N(0,03) and €5 ~ N(0,0%). Therefore, we estimate two parameters
o? and o3 for the effect of the data sets and the sampling within the data sets, respectively.
Additionally, 14 (K — 1) 4+ (M — 1) + (K — 1)(M — 1) fixed effects parameters are estimated.

Example (cont.). In case of our exemplar benchmark survey these are 3 + 126 parameters, see
Appendix A.2 for the parameters and a model summary. The global test with ANOVA and the
F-test rejects the null hypothesis that all algorithms have the same performance on all data sets.
Using Tukey contrasts we test pairwise differences and calculate simultaneous confidence intervals.
Figure 12 shows the 95% family-wise confidence intervals. The only Non-significant difference is

green - blue - '
orange - blue - :
purple - blue '
red - blue :
yellow — blue !
orange - green ®
purple - green
red — green | (*)
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Figure 12: Simultaneous 95% confidence intervals for multiple comparisons of means using Tukey
constrast based on the mixed effects model of the example experiment.

between orange and green). An interesting aspect appears, blue is a lot better than all other
algorithms. We establish the algorithm order

blue < red ~ orange = green < yellow < purple.
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All computations are performed using R (R Development Core Team, 2008), the corresponding R
functions are part of an R package for the analysis of benchmark experiments which is currently un-
der development and will be released on CRAN in due course. Preliminary versions of the functions
and all data used in this article are available from http://www.statistik.lmu.de/ eugster/.

2. Design of benchmark experiments

Following Hothorn et al. (2005), we set up a benchmark experiment according to their real world
situation. Givenisadataset £={z,..., Zm}. We draw B learning samples using some resampling

method, e.g. sampling with replacement (bootstrapping):

L= {a o)

B B B
¥ ={zr,. .. 2

Another possibility is cross-validation. Furthermore we assume that there are K > 1 candidate
algorithms a; (k = 1,...,K) available for the solution of the underlying problem. For each
algorithm aj, the function ay(- | £°) is the fitted model based on the sample £°. This function
itself has a distribution Ay as it is a random variable depending on £°:

ar(-| £%) ~ Ax(2), k=

The performance of the candidate algorithm a; when provided with the training data £ is mea-
sured by a scalar function p:
Pro = plag, £) ~ P = Py(£)

The pyyp, are samples drawn from the distribution Py (£) of the performance measure of the algorithm
k on the data set £.

In this paper, we illustrate the analysis of benchmark experiments by means of supervised
learning problems. The observations z are of the form z = (y,z) where y denotes the response
variable and 2 describes a vector of input variables. The aim of this learning task is to construct a
learner § = ax(z | £°) which, based on the input variables, provides us with information about the
unknown response. The discrepancy between the true response y and the predicted response § for
one observation z is measured by a scalar loss function L(y, ). The above introduced performance
measure p is in this case defined by some functional p of the distribution of the loss function:

aby 1. 1 abywy . P Ay
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Challenges

Ince et al. (2012):

"The vagaries of hardware, software and natural language will
always ensure that exact reproducibility remains uncertain, but
withholding code increases the chances that efforts to reproduce
results will fail.”
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Local (for me) reproducible validation:

o Clear separation between benchmark experiment and
analysis/manuscript.

e Clear separation between setup and execution:

Setup: data preparation, algorithm definition,
experiment design, resampling strategy, etc.

Execution: parallel computation, cloud computing, etc.

7/10



Global (for others) reproducible validation:

e Publish data sets and source code:

» Data set repositories

» Licence strategies for data and code:
- Open data and open source initiatives
- Reproducible Research Standard by Stodden (2009) for Code
(GNU GPL or BSD), Media (CC BY), Data (Science
Commons Database Protocol)

e Use already published data sets:
e.g., UCI Machine Learning Repository (Asuncion and
Newman, 2007), ArrayExpress (Parkinson et al., 2010)

¢ Use “standardized” benchmarking/validation software:
e.g., benchmark (Eugster, 2012), caret (Kuhn, 2012), mlr

(Bischl, 2012)
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Repeatable validation:

e See validation/benchmarking as “real” experiments!

e Follow the rules of experimental designs: “data sets as
patients and algorithms as treatments”
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Repeatable validation:

e See validation/benchmarking as “real” experiments!

e Follow the rules of experimental designs: “data sets as
patients and algorithms as treatments”

? Future: Validation/Benchmarking platform for randomized
experiments (e.g., random assignment of data sets within a
problem domain, of candidate algorithms, etc.)

9/10



References |

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL
http://www.ics.uci.edu/ "mlearn/MLRepository.html.

Bernd Bischl. mlr: Machine learning in R, 2012. URL http://mlr.r-forge.r-project.org. R package.

Anne-Laure Boulesteix. Editorial special issue: Validation in bioinformatics and molecular medicine. Briefings in
Bioinformatics, 12(3):187-188, 2011. doi: 10.1093/bib/bbr027. URL
http://bib.oxfordjournals.org/content/12/3/187.short.

Manuel J. A. Eugster. benchmark: Benchmark experiment toolbox, 2012. URL
http://cran.r-project.org/package=benchmark. R package.

Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Exploratory and inferential analysis of benchmark
experiments. Technical Report 30, Institut fiir Statistik, Ludwig-Maximilians-Universitdt Miinchen, Germany,
2008. URL http://epub.ub.uni-muenchen.de/4134/.

Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for open computer programs. Nature, 482:
485-488, 2012. doi: 10.1038/nature10836. URL
http://www.nature.com/nature/journal/v482/n7386/full/nature10836.html.

Max Kuhn. caret, 2012. URL http://cran.r-project.org/package=caret. R package.

Parkinson et al. Arrayexpress update-an archive of microarray and high-throughput sequencing-based functional
genomics experiments. Nucl. Acids Res., DOI: 10.1093/nar/gkq1040. Pubmed ID 21071405, 2010. URL
http://www.ebi.ac.uk/arrayexpress.

Soeren Sonnenburg. mldata.org, 2012. URL http://mldata.org/.

Victoria Stodden. Enabling reproducible research: Open licensing for scientific innovation. International Journal of
Communications Law and Policy, 13, 2009. URL
http://www.stanford.edu/ vcs/papers/ERROLSI03092009.pdf.

Images:

page 6: Image from http://esignsofcancer.blogspot.com/2011/09/warning-signs-of-cancer-in.html.

10 / 10


http://www.ics.uci.edu/~mlearn/MLRepository.html
http://mlr.r-forge.r-project.org
http://bib.oxfordjournals.org/content/12/3/187.short
http://cran.r-project.org/package=benchmark
http://epub.ub.uni-muenchen.de/4134/
http://www.nature.com/nature/journal/v482/n7386/full/nature10836.html
http://cran.r-project.org/package=caret
http://www.ebi.ac.uk/arrayexpress
http://mldata.org/
http://www.stanford.edu/~vcs/papers/ERROLSI03092009.pdf
http://esignsofcancer.blogspot.com/2011/09/warning-signs-of-cancer-in.html

	Appendix

