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Robotics l

V Wigotsky (PLASTICS ENGINEERING, 1998-01-01)

The robot and its offspring, the automated workcell, are
in the plastics industry. This is in marked contrast to
broader penetration in automotive, electronic, and aeros
manufacturing.However, the increasing speed and precisio
injection moldingmachine, for example, require parallel capabilities [...]

Al and robotics

O M Evans (INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2003-01-01)
Traces the development of artificial intelligence and mobile service robots
and predicts that intelligent robots will emerge by 2020.

Robot soccer: A multi-robot challenge
M M Veloso (MULTI-ROBOT SYSTEMS: FROM SWARMS TO INTELLIGENT AUTOMATA, 2002)

Robot soccer opened a new horizon for multi-robot research: Teams of
autonomous robots need to respond to a highly dynamic and uncertain
environment including other teams of robots. Furthermore, soccer robots
have clear and specific goals to accomplish. The multi-robot system relies
both on robust autonomous individual robots and teamwork. We have [...]

Robotic Architectures

M Mtshali, A Engelbrecht (DEFENCE SCIENCE JOURNAL, 2010-01-01)

In the development of mobile robotic systems, a robotic architecture playsa

crucial role in interconnecting all the sub-systems and controlling the

system. The design of robotic architectures for mobile autonomous robots 2/15
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Turning Segways into soccer robots

B Browning, E Searock, P E Rybski, M Veloso (INDUSTRIAL RO l l
INTERNATIONAL JOURNAL, 2005-01-01)

Purpose - To adapt the segway RMP, a dynamically balanci
build robots capable of playing soccer autonomously. Des
approach - Focuses on the electro-mechanical mechanisms
the Segway RMP autonomous, sensitive, and able to controla football.
Findings - Finds that turning a Segway RMP into a soccer-playing [...]

Multi-robot-systems in entertainment - Robot soccer
M W Han, G Novak (MULTI-AGENT-SYSTEMS IN PRODUCTION, 2000-01-01)

The robot soccer was introduced with the purpose to develop the intelligent
cooperative multi-robot (agents) systems (MAS). From the scientific
viewpoint the soccer robot is an intelligent autonomous agent, which
carries outtasks with other agents in cooperative, coordinated and
communicative way. The robot soccer provides a good opportunity to [...]

Modelling and control of a soccer robot

F Solc, B Honzik (7TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL,
PROCEEDINGS, 2002-01-01)

The paper describes some results of development of robot soccer team
RoBohemia fi-oin Brno University of Technology. The robot soccer team
belongs toMIROSOT (Micro RObut SOccer Tournament) robot soccer category.
The paper introduces mathematical model and simulation scheme of the robot
player simultaneously with sonic construction details. [...]
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“In contrast to, for example, ...

Mind-reading Computer [2]: “computational
model that makes directly testable predictions of
the fMRI activity associated with thinking about
arbitrary concrete nouns”.

BCI-Pinball [9]: “system was calibrated
individually for each of the subjects to discriminate
two classes of motor imagery (left hand and right
hand).”

. we aim to detect and learn brain patterns that are naturally
associated with (subliminal) relevance judgments rather than to
detect artificial, memorized patterns or pre-seen objects.
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First steps toward our vision

Predicting term-relevance from brain signals:

bl SN

A given topic T is relevant to a user
A term w is shown to the user
Brain signals are recorded using electroencephalography (EEG)

Classifier predicts the user’'s relevance of term w for topic T
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Predicting term-relevance from brain signals

Research questions:

1. How well can we predict relevance judgements on terms from
the brain signals of unseen users?

2. Which parts of the EEG signals are important for the
prediction?
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Experiment

Scenario:

Each participant read and judged six terms
(three relevant and three irrelevant) in six
topics.

Examples:
Entrepreneurship:  business risk, startup company, ...
Irag war:  US army, Saddam Hussein, ...

Irrelevant words:  shopping, video-games, ...

Data:
38 participants, balanced ground-truth
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Experiment

Entrepreneurship
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Term Key Term
shown pressed shown
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260 261
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EEG signals
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EEG signals
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EEG signals
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EEG signals
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EEG views

Views | Vi | Features

Relevance

Relevance judgement view:

A binary relevance judgement provided
by a participant for a term for a given
topic

Theta
Alpha
Beta
Gammal
Gamma2
Engage

Frequency-band-

1

ST W N

based views:

40 features for each frequency band:
20 features of average power over

1 second epochs before the relevance
judgement; 20 features of average
power over entire period, minus power
of the second before term onset

FEvent-relat
ERPs

7

ed-potential-based view:

80 features of average amplitude: 20
features for 80-150 ms, P1; 20 features
for 150-250 ms, N1/P2; 20 features
for 250-450 ms, N2 or P3a; 20 features
for 450-800 ms: N4 or P3b

Feature engineering in the frequency domain (i.e., frequency-band based) and

in the time domain (i.e., event-related-potential based).
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Classification setup

e Bayesian Efficient Multiple Kernel Learning [1],

K
y(x.)=a' (Z eka,*> +b
k=1

with y the binary relevance judgements, v, the views, and ey
the kernel weights (RQ2).

o Leave-one-participant-out strategy to estimate the
classification accuracy (RQ1).

e Only observations that conformed to the ground truth,
balance between relevant and irrelevant observations, five
repetitions.

e Simple automatic feature selection procedure based on the
t-statistic [8].
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Classification

accuracy
. Mean Mean
Views .
accuracy p-value improvement
All | 0.5415 0.0003 8.30%
Selected combined views:
Al+Gal 0.5429 0.0014 8.59%
Al+E | 0.5475 0.0007 9.50%
Gal+E | 0.5528 0.0002 10.55%
Al+Gal+Be | 0.5369 0.0022 7.37%
Al+Gal+E | 0.5586 <0.0001 11.72%
Individual views:
Alpha (Al) 0.5242 0.0265 4.83%
Gammal (Gal) | 0.5143 0.1445 2.86%
Beta (Be) 0.5005 0.4838 0.10%
Gamma2 | 0.5101 0.2003 2.02%
Theta | 0.5000 0.4984 0.01%
ERPs (E) 0.5312 0.0092 6.24%
Engage | 0.4773 0.9673 —4.55%

Bold entries denote that improvements are statistically significant at a level

a = 0.01, p-value < « with correction for multiple testing.
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Physiological findings

Localization of Alpha change assoziated with

to a normalized brain

relevance mapped
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Brodmann Area 10 associated with a range of cognitive functions that are
important for relevance judgments, such as recognition, semantic processing,
memory recall, and intentional planning [6, 5, 3].
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Physiological findings

Grand average of the ERP in the Pz channel:
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ERP after irrelevant and relevant term onset with significance difference after
450ms, maximizing at 747ms. The latency and topography of the potential
suggest the involvement of a P3-like potential [4].
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Why interesting for IR?

o In certain IR applications the target is to detect true positive
terms (i.e., relevant with very high probability) that represent
a user's search intent [7].

e In such applications, a classifier that trades recall for the
benefit of precision can be used to maximize user experience.

e We can take advantage of the fact that brain signals can be
captured continuously and with high throughput—compared
to signals that require explicit user interaction.

e As a result, a large number of relevance judgments can be
observed in a relatively short time.
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Application: Topic representation

Topic-wise prediction using a high-precision classifier with
p > 0.99 as threshold for a term being classifed as relevant:

Count

Topic Precision Recall | Top 5 relevant terms
all  relevant
Climate change and global warming | 209 111 0.5238 0.0991 | Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing
Entrepreneurship | 199 110 0.6897 0.1818 | business risk, startup company, business cre-
ation, shopping, virtual relationships
Immigration integration | 204 105 0.5238 0.1048 | citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code
Intelligent Vehicles | 185 109 0.8000 0.1101 | pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist
Iraq war | 208 111 0.6296 0.1532 | Saddam Hussein, US army, Tony Blair, morse

code, Tock n roll

Precarious employment | 204 106 0.5714 0.1132 | minimum wage, employment regulation, job
instability, virtual relationships, video-games

Mean | 202 109 0.6231 0.1270

Normal font indicats a relevant term according to the ground truth, italics
indicates an irrelevant term according to the ground truth.
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Summary

o Relevance judgments happen in the brain and therefore the most
intriguing way to predict relevance is to directly use the brain
signals.

e We showed that term-relevance prediction using only brain signals
captured via EEG is possible. The classification results showed
significantly better performances than the random baseline.

e As a practical application of TRPB, we demonstrated a
high-precision relevance predictor, which can construct
meaningful sets of terms for unknown topics and new users.

For future developments and all our other research related
to IR, visit http://augmentedresearch.hiit.fi/.
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