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“In contrast to, for example, ...”

Mind-reading Computer [2]: “computational
model that makes directly testable predictions of
the fMRI activity associated with thinking about
arbitrary concrete nouns”.

BCI-Pinball [9]: “system was calibrated
individually for each of the subjects to discriminate
two classes of motor imagery (left hand and right
hand).”

... we aim to detect and learn brain patterns that are naturally
associated with (subliminal) relevance judgments rather than to
detect artificial, memorized patterns or pre-seen objects.
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First steps toward our vision

Predicting term-relevance from brain signals:

1. A given topic T is relevant to a user

2. A term w is shown to the user

3. Brain signals are recorded using electroencephalography (EEG)

4. Classifier predicts the user’s relevance of term w for topic T
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Predicting term-relevance from brain signals

Research questions:

1. How well can we predict relevance judgements on terms from
the brain signals of unseen users?

2. Which parts of the EEG signals are important for the
prediction?
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Experiment

Scenario:
Each participant read and judged six terms
(three relevant and three irrelevant) in six
topics.

Examples:
Entrepreneurship: business risk, startup company, ...

Iraq war: US army, Saddam Hussein, ...

Irrelevant words: shopping, video-games, ...

Data:
38 participants, balanced ground-truth
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Experiment

“Simple” processing to reduce DC interference and to eliminate noise and
potential confounds of common artifacts such as eye movements and blinks.
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EEG views

Table 1: The outcome of the neural-activity record-
ing experiment: For each term presented to a par-
ticipant, we collected its binary relevance judge-
ment. Then, seven views were computed with fea-
tures based on the recorded EEG signal during a
certain period of time from term stimulus onset un-
til corresponding relevance judgments. The 20 fea-
tures represent the 20 most central channels F3, Fz,
F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1,
CP2, CP6, P3, Pz, P4, O1, Oz, and O2.

Views vk Features
Relevance judgement view :

Relevance A binary relevance judgement provided
by a participant for a term for a given
topic

Frequency-band-based views:

Theta 1 40 features for each frequency band:
20 features of average power over
1 second epochs before the relevance
judgement; 20 features of average
power over entire period, minus power
of the second before term onset

Alpha 2
Beta 3

Gamma1 4
Gamma2 5

Engage 6
Event-related-potential-based view :

ERPs 7 80 features of average amplitude: 20
features for 80–150 ms, P1; 20 features
for 150–250 ms, N1/P2; 20 features
for 250–450 ms, N2 or P3a; 20 features
for 450–800 ms: N4 or P3b

presented as soon as the participants pressed the relevance
key. After the experiment, the participants were asked to
fill out an online questionnaire regarding their background
information and their participation was compensated with
two movie tickets.

3.3 EEG Recording and Processing
A QuickAmp (BrainProducts GmbH, Gilching, Germany)

amplifier recorded EEG at a sample rate of 100 Hz. EEG
was recorded from 30 Ag/AgCl scalp electrodes, positioned
using EasyCap elastic hats (EasyCap GmbH, Herrsching,
Germany) on equidistant electrode sites of the 10% system
excluding FT9/FT10. Figure 1 shows a participant with the
full EEG sensor setup. Processing of EEG was conducted in
EEGLAB [30] and included re-referencing to the common
average reference and filtering of the data between 1 and
80 Hz with a notch filter between 46 and 54 Hz to reduce
DC interference. After that, an automatic artifact correc-
tion, based on the E�cient Independent Component Anal-
ysis algorithm [16], as implemented in the AAR toolbox [8],
was carried out in order to eliminate noise and potential
confounds of common artifacts such as eye movements and
blinks (see Figure 1).

Visual inspection of the raw data revealed extreme noise
levels for two participants. These participants’ data were
removed from further analysis, which left us with S = 38
participants. In addition, we only considered judgments that
conformed with the ground truth to reduce noise induced by
judgments possibly done by chance when participants were
not sure about their judgement.

3.4 Feature Engineering
Frequency-band-based features (FBF) and event-related-

potential-based features (ERPF) were extracted from the
pre-processed signals. FBFs capture the change in the sig-
nals for the whole time window when the user was shown
the stimulus. ERPFs capture the changes in the signals
for a specific short time window when a participant makes
the relevance judgement—which can be a much shorter time
window and not necessarily at the time of giving the explicit
relevance judgement but, e.g., a few (milli)-seconds after the
term was shown on screen.

As no consensus exists on where and how binary relevance
judgments of text stimuli a↵ect neural activity, it was not
possible to focus on, e.g., one specific frequency band or
brain area. Therefore, we engineered a set of di↵erent FBFs
and RPRFs in order to capture all the data that are po-
tentially related to the relevance judgement. In both cases,
the EEG was time-locked to the start (i.e., term shown on
screen) or end (i.e., participant gave the relevance judge-
ment) key events in the experiment. Table 1 gives a sum-
mary of the seven views and the corresponding features.

In order to maximize the cortical activity signal and min-
imize muscle-related activity and other artifactual noise, we
included only the 20 centrally located electrodes. To obtain
features, we calculated the power of the segment of 1 second
following the term onset using the fast Fourier transform and
applying log-transformation to normalize the signal. From
this, a baseline was subtracted by the same procedure over
the 1 second prior to the term onset.

Frequency-band-based views. An essential aspect of
electroencephalography (EEG) is that di↵erent types of os-
cillations, from the very slow theta (4–8 Hz) to the higher
gamma (80 Hz), have been associated with various psycho-
logical functions. For example, alpha activity has been re-
lated to attentiveness [3], theta activity to attention [21],
and alpha desynchronisation with semantic memory perfor-
mance [14]. Possibly, decisions regarding relevance or ir-
relevance, through acts of motor imagery [20] and motor
control [37], would trigger activity in the beta frequency.
Finally, given previous indications of the role of gamma ac-
tivity in consciousness [4], one might expect relevant search
results to be particularly accessible to consciousness and
thus be associated with gamma activity. Further evidence
for this comes from the observation that gamma-band os-
cillations have been associated with attentional information
processing through the salience of stimuli [11].

Furthermore, combinations of multiple frequency bands
have also been shown to account for cognitive functions. For
example, a combination of theta, alpha and beta bands was
found to be an index of engagement [30], which we therefore
include here as another candidate. Other combinations of
frequency bands were also tested from within the multi-view
model as will be discussed further on.

Event-related-potential-based view. Event-related-
potentials (ERPs) are brain responses resulting from spe-
cific sensory, cognitive or motor events as measured using
EEG. Generally, as stimuli are sensed, the modality-specific
sensory areas in the brain are activated early, appearing in
the EEG as peaks with a specific topography, latency and
direction (negative or positive).

A set of ERPs have been associated with cognitive func-
tions [19]. For example, the negative, fronto-central N2 has
been associated with uncertainty and cognitive control [7],

Feature engineering in the frequency domain (i.e., frequency-band based) and
in the time domain (i.e., event-related-potential based).
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Classification setup

• Bayesian Efficient Multiple Kernel Learning [1],

y(x∗) = aT

(
K∑

k=1

ekvk,∗

)
+ b

with y the binary relevance judgements, vk the views, and ek
the kernel weights (RQ2).

• Leave-one-participant-out strategy to estimate the
classification accuracy (RQ1).

• Only observations that conformed to the ground truth,
balance between relevant and irrelevant observations, five
repetitions.

• Simple automatic feature selection procedure based on the
t-statistic [8].
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Classification accuracy

Table 2: Classification results for di↵erent sets of
views. The table lists the mean classification accu-
racy, the p-value indicating a significant better mean
classification accuracy than the random baseline,
and the corresponding mean improvement. Because
of our experimental design, the random baseline pre-
diction of whether a term is relevant or irrelevant is
0.5. Bold entries denote that improvements are sta-
tistically significant at a level of ↵ = 0.01, p-value < ↵
with correction for multiple testing.

Views
Mean Mean

accuracy p-value improvement
All 0.5415 0.0003 8.30%

Selected combined views:

Al+Ga1 0.5429 0.0014 8.59%
Al+E 0.5475 0.0007 9.50%

Ga1+E 0.5528 0.0002 10.55%
Al+Ga1+Be 0.5369 0.0022 7.37%
Al+Ga1+E 0.5586 <0.0001 11.72%

Individual views:

Alpha (Al) 0.5242 0.0265 4.83%
Gamma1 (Ga1) 0.5143 0.1445 2.86%

Beta (Be) 0.5005 0.4838 0.10%
Gamma2 0.5101 0.2003 2.02%

Theta 0.5000 0.4984 0.01%
ERPs (E) 0.5312 0.0092 6.24%

Engage 0.4773 0.9673 �4.55%
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Figure 2: Classification accuracy for each left-out
participant with all views, ordered according to the
accuracy. TBRP generalizes for about 70% of the
participants which follows the BCI illiteracy.

5.1 Classification Performances
Table 2 summarizes the classification accuracies for di↵er-

ent sets of views. We report the mean classification accu-
racy, improvement over the random baseline, and the p-value
of a t-test for significance corrected for multiple testing us-
ing the Bonferroni correction. The t-test was applicable be-
cause the Shapiro-Wilk test showed no significant di↵erence
from the normal distribution. The classifiers using all seven

Table 3: Classification results for a restricted set of
participants motivated by the well-known“BCI illit-
eracy”. Bold entries denote that improvements are
statistically significant at a level of ↵ = 0.01, p < ↵
with correction for multiple testing.

Views
Mean Mean

# accuracy p-value improvement
All 26 0.5750 <0.0001 15.00%

Al+Ga1 28 0.5641 <0.0001 12.82%
Al+E 25 0.5853 <0.0001 17.06%

Ga1+E 26 0.5792 <0.0001 15.83%
Al+Ga1+Be 25 0.5490 0.0019 9.81%
Al+Ga1+E 28 0.5545 0.0005 10.89%

EEG views (All) predicted relevant and irrelevant terms for
an unseen participant significantly better than the random
baseline, and achieved a mean improvement of 8.30%.

Importance and influence of EEG views. The esti-
mated kernel weights �k of all learned classification models
using all seven views gave us a first indication of the im-
portance of each EEG view. Alpha and Gamma1 have the
highest weights, then Beta, then Gamma2, Theta and ERPs,
and finally Engage. To study the influence of di↵erent views
on the classification accuracy, we built models for each view
separately. The corresponding results are shown in the lower
block of Table 2. These single-view runs indicated that none
of the individual views alone led to significant improvements.
However, we found that Alpha and ERPs showed good per-
formances (0.52/4.83% and 0.53/6.24%, respectively), which
was in line with the kernel weights. Influenced by these re-
sults, we also computed classification models by combining
the best-performing views and the views with highest kernel
weights.

The corresponding classification results with combined
sets of views are shown in the middle block of Table 2. The
best set of views was found to be the one with the Alpha,
Gamma1, and ERPs (0.56/11.72%). Other significant im-
provements were achieved with classification models based
on Alpha and ERPs, and Gamma1 and ERPs. Even though
Beta had a high kernel weight, it did not significantly im-
prove the classification accuracy when combined with Alpha
and Gamma1. In summary, this suggests that changes in
Alpha, Gamma1, and ERPs activities are associated with
term-relevance judgments. The physiological findings pre-
sented in the next section support these results for Alpha
and ERPs.

“BCI illiteracy”analogy. Motivated by the well-known
“BCI illiteracy”, which means that BCI control does not
work for a non-negligible proportion of participants (ca. 15-
30%, [38]), we were interested to find out whether a simi-
lar e↵ect could be observed in TRPB. In detail, we stud-
ied whether if we could achieve a better classification ac-
curacy for a specific group of participants. Figure 2 shows
the classification accuracy of the classification models us-
ing all views; the horizontal line at 0.5 marks the random
baseline. 26 participants are above, and 12 participants are
below the random baseline. This proportion suggests that
capturing the relevance e↵ect is generalizable for 70% of the
participants and not generalizable for about 30% of the par-
ticipants, which follows the BCI illiteracy rate mentioned
in [38].

Bold entries denote that improvements are statistically significant at a level
α = 0.01, p-value < α with correction for multiple testing.
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Physiological findings

Localization of Alpha change assoziated with relevance mapped
to a normalized brain:

Brodmann Area 10 associated with a range of cognitive functions that are
important for relevance judgments, such as recognition, semantic processing,
memory recall, and intentional planning [6, 5, 3].
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Physiological findings

Grand average of the ERP in the Pz channel:

ERP after irrelevant and relevant term onset with significance difference after
450ms, maximizing at 747ms. The latency and topography of the potential
suggest the involvement of a P3-like potential [4].
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Why interesting for IR?

• In certain IR applications the target is to detect true positive
terms (i.e., relevant with very high probability) that represent
a user’s search intent [7].

• In such applications, a classifier that trades recall for the
benefit of precision can be used to maximize user experience.

• We can take advantage of the fact that brain signals can be
captured continuously and with high throughput—compared
to signals that require explicit user interaction.

• As a result, a large number of relevance judgments can be
observed in a relatively short time.
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Application: Topic representation

Topic-wise prediction using a high-precision classifier with
p > 0.99 as threshold for a term being classifed as relevant:

Table 4: Results of the high-precision classifier based on data fram all participants and all views. The
average top 5 terms are shown. The terms which are relevant according to the ground truth are in normal
font, irrelevant terms according to the ground truth are in italics. Note that, e.g., the irrelevant term “morse
code” in the topic “Iraq war” is predicted. A possible explanation is that brain signals associated with “morse
code” being relevant for this topic were detected even tough participants finally decided to judge the term
as irrelevant.

Topic
Count

Precision Recall Top 5 relevant terms
all relevant

Climate change and global warming 209 111 0.5238 0.0991 Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing

Entrepreneurship 199 110 0.6897 0.1818 business risk, startup company, business cre-
ation, shopping, virtual relationships

Immigration integration 204 105 0.5238 0.1048 citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code

Intelligent Vehicles 185 109 0.8000 0.1101 pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist

Iraq war 208 111 0.6296 0.1532 Saddam Hussein, US army, Tony Blair, morse
code, rock n roll

Precarious employment 204 106 0.5714 0.1132 minimum wage, employment regulation, job
instability, virtual relationships, video-games

Mean 202 109 0.6231 0.1270

6. HIGH-PRECISION TRPB
In a practical information retrieval application that can

benefit from relevance prediction, the target is to detect true
positive examples of terms that represent user’s search in-
tent [33]. In such applications, a classifier that trades recall
for the benefit of precision can be used to maximize user
experience. In other words, a classifier predicts a term as
relevant only if the estimated probability of being relevant
is very high, i.e., above a certain threshold (high precision).
Obviously, the classifier will miss a lot of true relevant terms
(low recall). However, we can take advantage of the fact
that brain signals can be captured continuously and with
high throughput—compared to implicit signals that require
explicit user interaction. As a result, a large number of rele-
vance judgments can be observed in a relatively short time.
We demonstrate such a high-precision variant of the TRPB
classifier and show that it can construct meaningful sets of
terms for unknown topics and unseen participants.

6.1 Prediction Setup
One of the advantages of the Bayesian MKL algorithm

introduced in Section 4.1 is that its outcome for an unseen
term y is not simply the binary decision to relevant or ir-
relevant, but the predictive distribution of the term being
relevant, i.e., p(y = relevant | ✓) with ✓ the estimated model
parameters. We built a high-precision TRPB variant by
predicting a term to be relevant only if the probability was
higher than 0.99. We used the same prediction setup as in
Section 4.2. The learned classification models were used to
predict the relevance of the terms for an unseen participant
and an unknown topic. We then quantified the predicted
relevant terms per topic over all unseen participants, which
let us to compute the top relevant terms per topic for an
average unseen participant.

6.2 Results
The results of the high-precision classifier in predicting

relevant terms are shown in Table 4. For each of the six
topics, we show the number of observations used in the pre-
diction, precision, and recall achieved by the high-precision
classifier, and the terms predicted relevant by the classifier.

While the overall classification problem is still hard, the
high-precision classifier achieves a mean precision of 0.62
with an improvement of 25% from the baseline while still
sustaining feasible recall of 0.13. However, there are dif-
ferences in precision across the topics ranging from 0.52 up
to 0.8. This suggests that some terms in some topics may
have been more di�cult for the participants than others.
For example, for the “Entrepreneurship” topic, the classifier
was used to classify 199 samples, of which 110 were rele-
vant and the rest were irrelevant. The high-precision clas-
sifier reconstructed 29 terms from these samples, of which
20 were relevant and 9 irrelevant, and achieved a precision
of 0.69 and recall of 0.18. The top five terms for this topic
were“business risk”, “startup company”, “business creation”,
“shopping”, and “virtual relationships”. While “shopping”
and “virtual relationships” were not relevant for the topic in
the strict sense (in the ground truth), they were still pre-
dicted relevant by the high-precision classifier. One may
argue that these terms are still somewhat relevant for the
topic. Similar is the e↵ect of the classifier picking a term that
was classified relevant, but assessed irrelevant in the ground
truth, is for example the term “Morse code” for the topic
“Iraq war” or the term “virtual relationships” for the topic
“Precarious employment”. This suggests that the classifier
can possibly detect the correct brain pattern of a participant
first thinking that the term may be relevant, even when the
participant still ends up assessing it irrelevant.

Normal font indicats a relevant term according to the ground truth, italics
indicates an irrelevant term according to the ground truth.
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Summary

• Relevance judgments happen in the brain and therefore the most
intriguing way to predict relevance is to directly use the brain
signals.

• We showed that term-relevance prediction using only brain signals
captured via EEG is possible. The classification results showed
significantly better performances than the random baseline.

• As a practical application of TRPB, we demonstrated a
high-precision relevance predictor, which can construct
meaningful sets of terms for unknown topics and new users.

For future developments and all our other research related
to IR, visit http://augmentedresearch.hiit.fi/.

http://augmentedresearch.hiit.fi/
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