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Consortium 

!  Prof Giulio Jacucci, University of Helsinki 
!  HCI, surface computing, exploratory search, peripheral physiology 

!  MindSee project coordinator 

 

!  Prof Samuel Kaski, Aalto University 
!  Probabilistic modeling, machine learning, reinforcement learning 

 

!  Prof Luciano Gamberini, University of Padova 
!  Cognitive ergonomics, user evaluation, eye tracking 

 

!  Prof Benjamin Blankertz, TU Berlin 
!  Brain-Computer Interfaces, EEG, machine learning 

 

!  Dr Jonathan Freeman, i2 media 
!  Digital consumer research, media and user experience 
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General objective 

Exemplify the fruitful symbiosis of modern BCI 
technology with a recent real-world HCI application 
to obtain a cutting-edge information retrieval system 
that outperforms state-of-the-art tools by more than 
doubling the performance of information seeking in 
realistic tasks.  
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Information seeking 

!  Three types of search activities: 
“lookup”, “learning”, and “investigation”  

!  Task:  
Prepare materials to write an essay on “machine 
learning” 
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Concept 
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Concept 
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Key parts 

!  Brain-Computer Interfaces 
!  EEG for real-time detection of perception, cognition and emotions 

!  Physiological data for user modeling in adaptive systems 
!  Other sensors beyond EEG from physiology to model the user and adapt the system 

!  Probabilistic Machine Learning for Multisource Data  
!  Modeling techniques that allow fusion of multi-source data for the different signals 

!  Interactive Retrieval, relevance feedback and visualization in 
information exploration  
!  Application view of relevance feedback in information retrieval 
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Two “Finland” projects 

!  Directing exploratory search with interactive intent modeling. 
Ruotsalo T, Peltonen J, Eugster MJA, et al., Conference on 
Information and Knowledge Management (CIKM), 2013. 

!  Predicting term-relevance from brain signals. 
Eugster MJA, Ruotsalo T, Spapé MM, et al., 37th international 
ACM SIGIR conference on Research & development in 
information retrieval (SIGIR), 2014. 
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Interactive intent modeling 

!  User directs exploratory search 
by providing explicit relevance 
feedback 

!  Feedback is used for estimates 
of search intent 

!  Estimated intents are visualized 
!  Relevant intents are close to the center 

!  Similar intents have similar angles 
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Interactive intent modeling 

!  Task: Prepare materials to write 
an essay on a given topic 
1.  Search for relevant articles that 

would be likely used as reference 
source in the essay 

2.  Answer a set of predefined 
questions related to the task topic 
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Interactive intent modeling 

!  Task: Prepare materials to write 
an essay on a given topic 
1.  Search for relevant articles that 

would be likely used as reference 
source in the essay 

2.  Answer a set of predefined 
questions related to the task topic 

!  MindSee: 
!  What if we use other signals than explicit feedback? Can we predict 

the intent better? Can we improve the performance in an exploratory 
search task even more? 
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Term-relevance prediction from brain signals 

!  Predict a user’s relevance of a term for a given topic 
(motivated by the keywords visualized in SciNet). 

!  Examples: 
!  Entrepreneurship: business risk, startup company, … 

!  Iraq war: US army, Saddam Hussein, ...  
!  Irrelevant words: shopping, video-games, ...  

 

!  Research questions: 
1.  How well can we predict relevance judgments on terms from the 

brain signals of unseen users?  

2.  Which parts of the EEG signals are important for the prediction?  
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Term-relevance prediction from brain signals 

!  Prediction performance: 

Table 2: Classification results for di↵erent sets of
views. The table lists the mean classification accu-
racy, the p-value indicating a significant better mean
classification accuracy than the random baseline,
and the corresponding mean improvement. Because
of our experimental design, the random baseline pre-
diction of whether a term is relevant or irrelevant is
0.5. Bold entries denote that improvements are sta-
tistically significant at a level of ↵ = 0.01, p-value < ↵

with correction for multiple testing.

Views
Mean Mean

accuracy p-value improvement
All 0.5415 0.0003 8.30%

Selected combined views:

Al+Ga1 0.5429 0.0014 8.59%
Al+E 0.5475 0.0007 9.50%

Ga1+E 0.5528 0.0002 10.55%
Al+Ga1+Be 0.5369 0.0022 7.37%
Al+Ga1+E 0.5586 <0.0001 11.72%

Individual views:

Alpha (Al) 0.5242 0.0265 4.83%
Gamma1 (Ga1) 0.5143 0.1445 2.86%

Beta (Be) 0.5005 0.4838 0.10%
Gamma2 0.5101 0.2003 2.02%

Theta 0.5000 0.4984 0.01%
ERPs (E) 0.5312 0.0092 6.24%

Engage 0.4773 0.9673 �4.55%
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Figure 2: Classification accuracy for each left-out
participant with all views, ordered according to the
accuracy. TBRP generalizes for about 70% of the
participants which follows the BCI illiteracy.

5.1 Classification Performances
Table 2 summarizes the classification accuracies for di↵er-

ent sets of views. We report the mean classification accu-
racy, improvement over the random baseline, and the p-value
of a t-test for significance corrected for multiple testing us-
ing the Bonferroni correction. The t-test was applicable be-
cause the Shapiro-Wilk test showed no significant di↵erence
from the normal distribution. The classifiers using all seven

Table 3: Classification results for a restricted set of
participants motivated by the well-known“BCI illit-
eracy”. Bold entries denote that improvements are
statistically significant at a level of ↵ = 0.01, p < ↵

with correction for multiple testing.

Views
Mean Mean

# accuracy p-value improvement
All 26 0.5750 <0.0001 15.00%

Al+Ga1 28 0.5641 <0.0001 12.82%
Al+E 25 0.5853 <0.0001 17.06%

Ga1+E 26 0.5792 <0.0001 15.83%
Al+Ga1+Be 25 0.5490 0.0019 9.81%
Al+Ga1+E 28 0.5545 0.0005 10.89%

EEG views (All) predicted relevant and irrelevant terms for
an unseen participant significantly better than the random
baseline, and achieved a mean improvement of 8.30%.
Importance and influence of EEG views. The esti-

mated kernel weights �k of all learned classification models
using all seven views gave us a first indication of the im-
portance of each EEG view. Alpha and Gamma1 have the
highest weights, then Beta, then Gamma2, Theta and ERPs,
and finally Engage. To study the influence of di↵erent views
on the classification accuracy, we built models for each view
separately. The corresponding results are shown in the lower
block of Table 2. These single-view runs indicated that none
of the individual views alone led to significant improvements.
However, we found that Alpha and ERPs showed good per-
formances (0.52/4.83% and 0.53/6.24%, respectively), which
was in line with the kernel weights. Influenced by these re-
sults, we also computed classification models by combining
the best-performing views and the views with highest kernel
weights.
The corresponding classification results with combined

sets of views are shown in the middle block of Table 2. The
best set of views was found to be the one with the Alpha,
Gamma1, and ERPs (0.56/11.72%). Other significant im-
provements were achieved with classification models based
on Alpha and ERPs, and Gamma1 and ERPs. Even though
Beta had a high kernel weight, it did not significantly im-
prove the classification accuracy when combined with Alpha
and Gamma1. In summary, this suggests that changes in
Alpha, Gamma1, and ERPs activities are associated with
term-relevance judgments. The physiological findings pre-
sented in the next section support these results for Alpha
and ERPs.
“BCI illiteracy”analogy. Motivated by the well-known

“BCI illiteracy”, which means that BCI control does not
work for a non-negligible proportion of participants (ca. 15-
30%, [38]), we were interested to find out whether a simi-
lar e↵ect could be observed in TRPB. In detail, we stud-
ied whether if we could achieve a better classification ac-
curacy for a specific group of participants. Figure 2 shows
the classification accuracy of the classification models us-
ing all views; the horizontal line at 0.5 marks the random
baseline. 26 participants are above, and 12 participants are
below the random baseline. This proportion suggests that
capturing the relevance e↵ect is generalizable for 70% of the
participants and not generalizable for about 30% of the par-
ticipants, which follows the BCI illiteracy rate mentioned
in [38].

!  Physiological findings: 
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Figure 3: Visualizations of physiological findings (details in Section 5.2): (a, top) Localization of the Alpha
change associated with relevance mapped to a normalized brain space. Horizontal and sagittal slice show
an area of maximum change with peak significant area localized in the Brodmann Area 10, which has been
associated with a range of cognitive functions that are important for relevance judgments, such as recognition,
semantic processing, memory recall, and intentional planning. (a, bottom) Topography of the event-related
potential in the interval between 450 and 747 ms after irrelevant (left) and relevant (right) term onset. Peak
significant di↵erence was found in the Pz channel. (b) The corresponding ERP signal at the Pz channel shows
the significant di↵erence between relevant and irrelevant after 450 ms, maximizing at 747 ms.

A screening of the EEG signals of the 12 participants did
not show a higher noise level, which would explain the worse-
than-random prediction accuracy. Given that the learning
data for these cases are the other participants (leave-one-
participant-out strategy), there may be a group of partici-
pants with similar brain signals. There seems, however, to
be a group of participants with possibly di↵erent brain sig-
nals. In order to investigate if we could achieve further clas-
sification improvements, we investigated an additional set
of classification models for a restricted set of participants.
The restricted set was determined via a simple trial-and-
error procedure: i.e., we included all participants with an
accuracy above the random baseline.

Table 3 shows the corresponding classification results for
the restricted set of participants. The results indicate that
it is possible to increase the mean prediction accuracy and
therefore the mean improvement in all cases; in the best
case up to 17% (Alpha and ERPs). Because the simple trial-
and-error procedure, these analyses do not provide generaliz-
able results over all participants. This procedure, however,
allowed us to demonstrate an analogy to the well-known
“BCI illiteracy” e↵ect.

5.2 Physiological Findings
The views that were found most e↵ective for the classi-

fication (Alpha and ERPs) were investigated from a phys-
iological point of view. We present brain mappings of the
average Alpha e↵ect across participants and the topography
of the strong ERP e↵ect.

Alpha. We attempted to localize the intracranial source
of the Alpha using exact low resolution electromagnetic to-
mography (eLORETA, [28]). eLORETA is a discrete dis-
tributed linear weighted minimum norm inverse solution to

the source localization of scalp recorded activity, yielding
images with exact localization, at a cost of a low spatial res-
olution. For each subject, two large 1024 ms segments of
relevant versus irrelevant terms were used to calculate the
cross spectra across all electrodes resulting in 6000 voxels for
both relevant and irrelevant terms for each subject. In or-
der to localize the Alpha change associated with relevance,
we used a pairwise log of F -ratio test across voxels using
spatial normalization to find a maximally significant source
localization (with correction for multiple testing [25]). The
analysis based on the obtained corrected critical two-sided
F⇤ = .37 results in an area of 10 voxels, all located in the
left frontal lobe, specifically in Brodmann Area 10 and a
peak localization at MNI coordinates (�25, 55, 25) with a
corrected p < 0.02. The source localization of the e↵ect on
alpha oscillations supports this hypothesis in suggesting a
key role of the frontal lobe. The significant Brodmann Area
10 has previously been related to recognition [31], memory
retrieval [32], and the evaluation of working memory [41].
ERPs. To investigate which components of the ERP con-

tribute most to the model, we analyzed the average di↵er-
ence between relevant and irrelevant terms also in a more
traditional manner. Average relevant and irrelevant ERPs
were computed for each subject over a minimum of 8 and a
maximum of 16 correctly classified epochs in each condition.
The main significant areas were observed in the Cz, Pz, C4,
and P4 channels, with the peak di↵erence in Pz beginning at
477 ms (p < .05) and peaking at 757 ms (p < .0001) as shown
in Figure 3. The latency and topography of the potential
suggest the involvement of a P3-like potential. The high la-
tency and parietal topography coincide with the P3b, thus
suggesting that relevance does not a↵ect an early change in
orientation, but a later, memory-related e↵ect [29].

Grand average of the ERP in the Pz channel 

Localization of Alpha change 

Classification accuracy of different EEG views 
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Term-relevance prediction from brain signals 

!  High-precision classifier (p > 0.99): 

Table 4: Results of the high-precision classifier based on data fram all participants and all views. The
average top 5 terms are shown. The terms which are relevant according to the ground truth are in normal
font, irrelevant terms according to the ground truth are in italics. Note that, e.g., the irrelevant term “morse
code” in the topic “Iraq war” is predicted. A possible explanation is that brain signals associated with “morse
code” being relevant for this topic were detected even tough participants finally decided to judge the term
as irrelevant.

Topic
Count

Precision Recall Top 5 relevant terms
all relevant

Climate change and global warming 209 111 0.5238 0.0991 Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing

Entrepreneurship 199 110 0.6897 0.1818 business risk, startup company, business cre-
ation, shopping, virtual relationships

Immigration integration 204 105 0.5238 0.1048 citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code

Intelligent Vehicles 185 109 0.8000 0.1101 pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist

Iraq war 208 111 0.6296 0.1532 Saddam Hussein, US army, Tony Blair, morse
code, rock n roll

Precarious employment 204 106 0.5714 0.1132 minimum wage, employment regulation, job
instability, virtual relationships, video-games

Mean 202 109 0.6231 0.1270

6. HIGH-PRECISION TRPB
In a practical information retrieval application that can

benefit from relevance prediction, the target is to detect true
positive examples of terms that represent user’s search in-
tent [33]. In such applications, a classifier that trades recall
for the benefit of precision can be used to maximize user
experience. In other words, a classifier predicts a term as
relevant only if the estimated probability of being relevant
is very high, i.e., above a certain threshold (high precision).
Obviously, the classifier will miss a lot of true relevant terms
(low recall). However, we can take advantage of the fact
that brain signals can be captured continuously and with
high throughput—compared to implicit signals that require
explicit user interaction. As a result, a large number of rele-
vance judgments can be observed in a relatively short time.
We demonstrate such a high-precision variant of the TRPB
classifier and show that it can construct meaningful sets of
terms for unknown topics and unseen participants.

6.1 Prediction Setup
One of the advantages of the Bayesian MKL algorithm

introduced in Section 4.1 is that its outcome for an unseen
term y is not simply the binary decision to relevant or ir-
relevant, but the predictive distribution of the term being
relevant, i.e., p(y = relevant | ✓) with ✓ the estimated model
parameters. We built a high-precision TRPB variant by
predicting a term to be relevant only if the probability was
higher than 0.99. We used the same prediction setup as in
Section 4.2. The learned classification models were used to
predict the relevance of the terms for an unseen participant
and an unknown topic. We then quantified the predicted
relevant terms per topic over all unseen participants, which
let us to compute the top relevant terms per topic for an
average unseen participant.

6.2 Results
The results of the high-precision classifier in predicting

relevant terms are shown in Table 4. For each of the six
topics, we show the number of observations used in the pre-
diction, precision, and recall achieved by the high-precision
classifier, and the terms predicted relevant by the classifier.
While the overall classification problem is still hard, the

high-precision classifier achieves a mean precision of 0.62
with an improvement of 25% from the baseline while still
sustaining feasible recall of 0.13. However, there are dif-
ferences in precision across the topics ranging from 0.52 up
to 0.8. This suggests that some terms in some topics may
have been more di�cult for the participants than others.
For example, for the “Entrepreneurship” topic, the classifier
was used to classify 199 samples, of which 110 were rele-
vant and the rest were irrelevant. The high-precision clas-
sifier reconstructed 29 terms from these samples, of which
20 were relevant and 9 irrelevant, and achieved a precision
of 0.69 and recall of 0.18. The top five terms for this topic
were“business risk”, “startup company”, “business creation”,
“shopping”, and “virtual relationships”. While “shopping”
and “virtual relationships” were not relevant for the topic in
the strict sense (in the ground truth), they were still pre-
dicted relevant by the high-precision classifier. One may
argue that these terms are still somewhat relevant for the
topic. Similar is the e↵ect of the classifier picking a term that
was classified relevant, but assessed irrelevant in the ground
truth, is for example the term “Morse code” for the topic
“Iraq war” or the term “virtual relationships” for the topic
“Precarious employment”. This suggests that the classifier
can possibly detect the correct brain pattern of a participant
first thinking that the term may be relevant, even when the
participant still ends up assessing it irrelevant.
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Term-relevance prediction from brain signals 

!  High-precision classifier (p > 0.99): 

Table 4: Results of the high-precision classifier based on data fram all participants and all views. The
average top 5 terms are shown. The terms which are relevant according to the ground truth are in normal
font, irrelevant terms according to the ground truth are in italics. Note that, e.g., the irrelevant term “morse
code” in the topic “Iraq war” is predicted. A possible explanation is that brain signals associated with “morse
code” being relevant for this topic were detected even tough participants finally decided to judge the term
as irrelevant.

Topic
Count

Precision Recall Top 5 relevant terms
all relevant

Climate change and global warming 209 111 0.5238 0.0991 Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing

Entrepreneurship 199 110 0.6897 0.1818 business risk, startup company, business cre-
ation, shopping, virtual relationships

Immigration integration 204 105 0.5238 0.1048 citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code

Intelligent Vehicles 185 109 0.8000 0.1101 pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist

Iraq war 208 111 0.6296 0.1532 Saddam Hussein, US army, Tony Blair, morse
code, rock n roll

Precarious employment 204 106 0.5714 0.1132 minimum wage, employment regulation, job
instability, virtual relationships, video-games

Mean 202 109 0.6231 0.1270

6. HIGH-PRECISION TRPB
In a practical information retrieval application that can

benefit from relevance prediction, the target is to detect true
positive examples of terms that represent user’s search in-
tent [33]. In such applications, a classifier that trades recall
for the benefit of precision can be used to maximize user
experience. In other words, a classifier predicts a term as
relevant only if the estimated probability of being relevant
is very high, i.e., above a certain threshold (high precision).
Obviously, the classifier will miss a lot of true relevant terms
(low recall). However, we can take advantage of the fact
that brain signals can be captured continuously and with
high throughput—compared to implicit signals that require
explicit user interaction. As a result, a large number of rele-
vance judgments can be observed in a relatively short time.
We demonstrate such a high-precision variant of the TRPB
classifier and show that it can construct meaningful sets of
terms for unknown topics and unseen participants.

6.1 Prediction Setup
One of the advantages of the Bayesian MKL algorithm

introduced in Section 4.1 is that its outcome for an unseen
term y is not simply the binary decision to relevant or ir-
relevant, but the predictive distribution of the term being
relevant, i.e., p(y = relevant | ✓) with ✓ the estimated model
parameters. We built a high-precision TRPB variant by
predicting a term to be relevant only if the probability was
higher than 0.99. We used the same prediction setup as in
Section 4.2. The learned classification models were used to
predict the relevance of the terms for an unseen participant
and an unknown topic. We then quantified the predicted
relevant terms per topic over all unseen participants, which
let us to compute the top relevant terms per topic for an
average unseen participant.

6.2 Results
The results of the high-precision classifier in predicting

relevant terms are shown in Table 4. For each of the six
topics, we show the number of observations used in the pre-
diction, precision, and recall achieved by the high-precision
classifier, and the terms predicted relevant by the classifier.
While the overall classification problem is still hard, the

high-precision classifier achieves a mean precision of 0.62
with an improvement of 25% from the baseline while still
sustaining feasible recall of 0.13. However, there are dif-
ferences in precision across the topics ranging from 0.52 up
to 0.8. This suggests that some terms in some topics may
have been more di�cult for the participants than others.
For example, for the “Entrepreneurship” topic, the classifier
was used to classify 199 samples, of which 110 were rele-
vant and the rest were irrelevant. The high-precision clas-
sifier reconstructed 29 terms from these samples, of which
20 were relevant and 9 irrelevant, and achieved a precision
of 0.69 and recall of 0.18. The top five terms for this topic
were“business risk”, “startup company”, “business creation”,
“shopping”, and “virtual relationships”. While “shopping”
and “virtual relationships” were not relevant for the topic in
the strict sense (in the ground truth), they were still pre-
dicted relevant by the high-precision classifier. One may
argue that these terms are still somewhat relevant for the
topic. Similar is the e↵ect of the classifier picking a term that
was classified relevant, but assessed irrelevant in the ground
truth, is for example the term “Morse code” for the topic
“Iraq war” or the term “virtual relationships” for the topic
“Precarious employment”. This suggests that the classifier
can possibly detect the correct brain pattern of a participant
first thinking that the term may be relevant, even when the
participant still ends up assessing it irrelevant.

!  MindSee: 
!  Can we use utilize this in reading real documents and in a real 

information retrieval system? 
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Summary 

!  For future developments and all our research 
related to MindSee, visit http://www.mindsee.eu/! 

!  For general questions, contact Giulio Jacucci, 
giulio.jacucci@helsinki.fi.  

“MindSee is Information retrieval, BCI, machine 
learning, neuroscience, affective computing and 
more...”  
  ��from the MindSee Blog 
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