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General objective

Exemplify the fruitful symbiosis of modern BCI
technology with a recent real-world HCI application
to obtain a cutting-edge information retrieval system
that outperforms state-of-the-art tools by more than
doubling the performance of information seeking in
realistic tasks.
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Information seeking

» Three types of search activities:
“lookup”, “learning”, and “investigation”

» Task:
Prepare materials to write an essay on “machine
learning”
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Information seeking

GOL)ng machine learning

Scholar About 3,230,000 results (0.04 sec)

An introduction to MCMC for machine learning

C Andrieu, N De Freitas, A Doucet, Ml Jordan - Machine learning, 2003 - Springer
Abstract This purpose of this introductory paper is threefold. First, it introduces the Monte
Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main
building blocks of modern Markov chain Monte Carlo simulation, thereby providing and ...
Cited by 1081 Related articles All 58 versions Cite Save

Genetic algorithms and machine learning

DE Goldberg, JH Holland - Machine learning, 1988 - Springer

There is no a priori reason why machine learning must borrow from nature. A field could
exist, complete with well-defined algorithms, data structures, and theories of learning,
without once referring to organisms, cognitive or genetic structures, and psychological or ...
Cited by 605 Related articles All 7 versions Cite Save

Machine learning for the detection of oil spills in satellite radar images
M Kubat, RC Holte, S Matwin - Machine learning, 1998 - Springer

Abstract During a project examining the use of machine learning techniques for oil spill
detection, we encountered several essential questions that we believe deserve the attention
of the research community. We use our particular case study to illustrate such issues as ...
Cited by 690 Related articles All 18 versions Cite Save

sook] Pattern recognition and machine learning
CM Bishop - 2006 - soic.iupui.edu
Machine learning is a key technology in bicinformatics, especially in the analysis of" big
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Information seeking
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Information seeking
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Information seeking
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Concept
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Concept
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Key parts

Brain-Computer Interfaces
» EEG forreal-fime detection of perception, cognition and emotions

v

v

Physiological data for user modeling in adaptive systems
»  Other sensors beyond EEG from physiology to model the user and adapt the system

Probabilistic Machine Learning for Multisource Data
»  Modeling techniques that allow fusion of multi-source data for the different signals

v

Interactive Retrieval, relevance feedback and visualization in

information exploration
» Application view of relevance feedback in information retrieval

v
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Two “Finland” projects

» Directing exploratory search with interactive intent modeling.
Ruotsalo T, Peltonen J, Eugster MJA, et al., Conference on
Information and Knowledge Management (CIKM), 2013.

» Predicting term-relevance from brain signals.
Eugster MJA, Ruotsalo T, Spapé MM, et al., 37th international
ACM SIGIR conference on Research & development in
information retrieval (SIGIR), 2014.
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Interactive intent modeling

» User directs exploratory search
by providing explicit relevance
feedback

image segmentation

» Feedback is used for estimates
of search intent e

» Estimated intents are visualized ey nige e
» Relevant intents are close to the center )
»  Similar intents have similar angles
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Interactive intent modeling

— Task performance —
» Task: Prepare materials to write

an essay on a given topic

1. Search for relevant articles that
would be likely used as reference

source in the essay Expert evaluation of written
) answers of users to their tasks
2. Answer a set of predefined (on a scale 1-5, larger is better)

questions related to the task topic

@ IntentRadar  @IntentList @®TypedQuery
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Interactive intent modeling

— Task performance —
» Task: Prepare materials to write

an essay on a given topic

1. Search for relevant articles that
would be likely used as reference

source in the essay Expert evaluation of written
) answers of users to their tasks
2. Answer a set of predefined (on a scale 1-5, larger is better)

questions related to the task topic

@ IntentRadar  @IntentList @®TypedQuery

» MindSee:

»  What if we use other signals than explicit feedback? Can we predict
the infent bettere Can we improve the performance in an exploratory
search task even more?

EU FP7; Grant Agreement # 611570 15 © MindSee Consortium Confidential, 2013-2016



Term-relevance prediction from brain signals

» Predict a user’s relevance of a term for a given topic
(motivated by the keywords visualized in SciNet).

» Examples:
» Entrepreneurship: business risk, startup companys, ...
» Irag war: US army, Saddam Hussein, ...
» lIrrelevant words: shopping, video-games, ...

» Research questions:

1. How well can we predict relevance judgments on terms from the
brain signals of unseen users?

2. Which parts of the EEG signals are important for the prediction?
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Term-relevance prediction from brain signals

» Prediction performance:

. Mean Mean
Views .
accuracy p-value improvement
All 0.5415 0.0003 8.30%
Selected combined views:
Al+Gal 0.5429 0.0014 8.59%
Al+E 0.5475 0.0007 9.50%
Gal+E 0.5528 0.0002 10.55%
Al+Gal+Be 0.5369 0.0022 7.37%
Al+Gal+E 0.5586 <0.0001 11.72%
Individual views:
Alpha (Al) 0.5242 0.0265 4.83%
Gammal (Gal) | 0.5143 0.1445 2.86%
Beta (Be) 0.5005 0.4838 0.10%
Gamma?2 0.5101 0.2003 2.02%
Theta 0.5000 0.4984 0.01%
ERPs (E) 0.5312 0.0092 6.24%
Engage 0.4773 0.9673 —4.55%

Classification accuracy of different EEG views
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» Physiological findings:
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Term-relevance prediction from brain signals

» High-precision classifier (p > 0.99):

Topic Count Precision Recall | Top 5 relevant terms
all  relevant
Climate change and global warming | 209 111 0.5238 0.0991 | Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing
Entrepreneurship | 199 110 0.6897 0.1818 | business risk, startup company, business cre-
ation, shopping, virtual relationships
Immigration integration | 204 105 0.5238 0.1048 | citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code
Intelligent Vehicles | 185 109 0.8000 0.1101 | pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist
Iraq war | 208 111 0.6296 0.1532 | Saddam Hussein, US army, Tony Blair, morse
code, rock n roll
Precarious employment | 204 106 0.5714 0.1132 | minimum wage, employment regulation, job
instability, virtual relationships, video-games
Mean | 202 109 0.6231 0.1270
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Term-relevance prediction from brain signals

» High-precision classifier (p > 0.99):

Count

Topic Precision Recall | Top 5 relevant terms
all  relevant
Climate change and global warming | 209 111 0.5238 0.0991 | Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing
Entrepreneurship | 199 110 0.6897 0.1818 | business risk, startup company, business cre-
ation, shopping, virtual relationships
Immigration integration | 204 105 0.5238 0.1048 | citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code
Intelligent Vehicles | 185 109 0.8000 0.1101 | pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist
Iraq war | 208 111 0.6296 0.1532 | Saddam Hussein, US army, Tony Blair, morse
code, rock n roll
Precarious employment | 204 106 0.5714 0.1132 | minimum wage, employment regulation, job
instability, virtual relationships, video-games
Mean | 202 109 0.6231 0.1270

» MindSee:

» Can we use utilize this in reading real documents and in a real
information retrieval system®<
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Summary

“MindSee is Information retrieval, BCI, machine
learning, neuroscience, affective computing and

more...”
—from the MindSee Blog

» For future developments and all our research
related to MindSee, visit hitp://www.mindsee.eu/!

» For general questions, contact Giulio Jacucci,
qiulio.jacucci@helsinki.fi.
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